次の方程式を解きます。 (1) $z^3 = 27$ (2) $z^6 = -1$ (3) $z^3 = -8i$ (4) $z^4 = -32(1 + \sqrt{3}i)$代数学複素数複素平面n乗根2025/6/61. 問題の内容次の方程式を解きます。(1) z3=27z^3 = 27z3=27(2) z6=−1z^6 = -1z6=−1(3) z3=−8iz^3 = -8iz3=−8i(4) z4=−32(1+3i)z^4 = -32(1 + \sqrt{3}i)z4=−32(1+3i)2. 解き方の手順(1) z3=27z^3 = 27z3=27z3=27=27(cos0+isin0)z^3 = 27 = 27(\cos 0 + i\sin 0)z3=27=27(cos0+isin0)z=273(cos0+2kπ3+isin0+2kπ3)=3(cos2kπ3+isin2kπ3)z = \sqrt[3]{27} (\cos \frac{0 + 2k\pi}{3} + i\sin \frac{0 + 2k\pi}{3}) = 3 (\cos \frac{2k\pi}{3} + i\sin \frac{2k\pi}{3})z=327(cos30+2kπ+isin30+2kπ)=3(cos32kπ+isin32kπ), k=0,1,2k = 0, 1, 2k=0,1,2.k=0k=0k=0 のとき z=3(cos0+isin0)=3z = 3 (\cos 0 + i\sin 0) = 3z=3(cos0+isin0)=3k=1k=1k=1 のとき z=3(cos2π3+isin2π3)=3(−12+i32)=−32+i332z = 3 (\cos \frac{2\pi}{3} + i\sin \frac{2\pi}{3}) = 3(-\frac{1}{2} + i\frac{\sqrt{3}}{2}) = -\frac{3}{2} + i\frac{3\sqrt{3}}{2}z=3(cos32π+isin32π)=3(−21+i23)=−23+i233k=2k=2k=2 のとき z=3(cos4π3+isin4π3)=3(−12−i32)=−32−i332z = 3 (\cos \frac{4\pi}{3} + i\sin \frac{4\pi}{3}) = 3(-\frac{1}{2} - i\frac{\sqrt{3}}{2}) = -\frac{3}{2} - i\frac{3\sqrt{3}}{2}z=3(cos34π+isin34π)=3(−21−i23)=−23−i233(2) z6=−1z^6 = -1z6=−1z6=−1=cosπ+isinπz^6 = -1 = \cos \pi + i\sin \piz6=−1=cosπ+isinπz=cos(π+2kπ6)+isin(π+2kπ6)z = \cos (\frac{\pi + 2k\pi}{6}) + i \sin (\frac{\pi + 2k\pi}{6})z=cos(6π+2kπ)+isin(6π+2kπ), k=0,1,2,3,4,5k = 0, 1, 2, 3, 4, 5k=0,1,2,3,4,5.k=0:z=cosπ6+isinπ6=32+i2k=0: z = \cos \frac{\pi}{6} + i\sin \frac{\pi}{6} = \frac{\sqrt{3}}{2} + \frac{i}{2}k=0:z=cos6π+isin6π=23+2ik=1:z=cosπ2+isinπ2=ik=1: z = \cos \frac{\pi}{2} + i\sin \frac{\pi}{2} = ik=1:z=cos2π+isin2π=ik=2:z=cos5π6+isin5π6=−32+i2k=2: z = \cos \frac{5\pi}{6} + i\sin \frac{5\pi}{6} = -\frac{\sqrt{3}}{2} + \frac{i}{2}k=2:z=cos65π+isin65π=−23+2ik=3:z=cos7π6+isin7π6=−32−i2k=3: z = \cos \frac{7\pi}{6} + i\sin \frac{7\pi}{6} = -\frac{\sqrt{3}}{2} - \frac{i}{2}k=3:z=cos67π+isin67π=−23−2ik=4:z=cos3π2+isin3π2=−ik=4: z = \cos \frac{3\pi}{2} + i\sin \frac{3\pi}{2} = -ik=4:z=cos23π+isin23π=−ik=5:z=cos11π6+isin11π6=32−i2k=5: z = \cos \frac{11\pi}{6} + i\sin \frac{11\pi}{6} = \frac{\sqrt{3}}{2} - \frac{i}{2}k=5:z=cos611π+isin611π=23−2i(3) z3=−8iz^3 = -8iz3=−8iz3=−8i=8(cos3π2+isin3π2)z^3 = -8i = 8(\cos \frac{3\pi}{2} + i\sin \frac{3\pi}{2})z3=−8i=8(cos23π+isin23π)z=83(cos(3π2+2kπ3)+isin(3π2+2kπ3))=2(cos(3π+4kπ6)+isin(3π+4kπ6))z = \sqrt[3]{8} (\cos (\frac{\frac{3\pi}{2} + 2k\pi}{3}) + i\sin (\frac{\frac{3\pi}{2} + 2k\pi}{3})) = 2(\cos (\frac{3\pi + 4k\pi}{6}) + i\sin (\frac{3\pi + 4k\pi}{6}))z=38(cos(323π+2kπ)+isin(323π+2kπ))=2(cos(63π+4kπ)+isin(63π+4kπ)), k=0,1,2k=0, 1, 2k=0,1,2.k=0:z=2(cosπ2+isinπ2)=2ik=0: z = 2 (\cos \frac{\pi}{2} + i\sin \frac{\pi}{2}) = 2ik=0:z=2(cos2π+isin2π)=2ik=1:z=2(cos7π6+isin7π6)=2(−32−i2)=−3−ik=1: z = 2 (\cos \frac{7\pi}{6} + i\sin \frac{7\pi}{6}) = 2(-\frac{\sqrt{3}}{2} - \frac{i}{2}) = -\sqrt{3} - ik=1:z=2(cos67π+isin67π)=2(−23−2i)=−3−ik=2:z=2(cos11π6+isin11π6)=2(32−i2)=3−ik=2: z = 2 (\cos \frac{11\pi}{6} + i\sin \frac{11\pi}{6}) = 2(\frac{\sqrt{3}}{2} - \frac{i}{2}) = \sqrt{3} - ik=2:z=2(cos611π+isin611π)=2(23−2i)=3−i(4) z4=−32(1+3i)z^4 = -32(1 + \sqrt{3}i)z4=−32(1+3i)z4=−32(1+3i)=64(−12−32i)=64(cos4π3+isin4π3)z^4 = -32(1 + \sqrt{3}i) = 64(-\frac{1}{2} - \frac{\sqrt{3}}{2}i) = 64(\cos \frac{4\pi}{3} + i\sin \frac{4\pi}{3})z4=−32(1+3i)=64(−21−23i)=64(cos34π+isin34π)z=644(cos(4π3+2kπ4)+isin(4π3+2kπ4))=22(cos(4π+6kπ12)+isin(4π+6kπ12))=22(cos(2π+3kπ6)+isin(2π+3kπ6))z = \sqrt[4]{64} (\cos (\frac{\frac{4\pi}{3} + 2k\pi}{4}) + i\sin (\frac{\frac{4\pi}{3} + 2k\pi}{4})) = 2\sqrt{2} (\cos (\frac{4\pi + 6k\pi}{12}) + i\sin (\frac{4\pi + 6k\pi}{12})) = 2\sqrt{2} (\cos (\frac{2\pi + 3k\pi}{6}) + i\sin (\frac{2\pi + 3k\pi}{6}))z=464(cos(434π+2kπ)+isin(434π+2kπ))=22(cos(124π+6kπ)+isin(124π+6kπ))=22(cos(62π+3kπ)+isin(62π+3kπ)), k=0,1,2,3k=0, 1, 2, 3k=0,1,2,3.k=0:z=22(cosπ3+isinπ3)=22(12+i32)=2+i6k=0: z = 2\sqrt{2} (\cos \frac{\pi}{3} + i\sin \frac{\pi}{3}) = 2\sqrt{2} (\frac{1}{2} + i\frac{\sqrt{3}}{2}) = \sqrt{2} + i\sqrt{6}k=0:z=22(cos3π+isin3π)=22(21+i23)=2+i6k=1:z=22(cos5π6+isin5π6)=22(−32+i12)=−6+i2k=1: z = 2\sqrt{2} (\cos \frac{5\pi}{6} + i\sin \frac{5\pi}{6}) = 2\sqrt{2} (-\frac{\sqrt{3}}{2} + i\frac{1}{2}) = -\sqrt{6} + i\sqrt{2}k=1:z=22(cos65π+isin65π)=22(−23+i21)=−6+i2k=2:z=22(cos4π3+isin4π3)=22(−12−i32)=−2−i6k=2: z = 2\sqrt{2} (\cos \frac{4\pi}{3} + i\sin \frac{4\pi}{3}) = 2\sqrt{2} (-\frac{1}{2} - i\frac{\sqrt{3}}{2}) = -\sqrt{2} - i\sqrt{6}k=2:z=22(cos34π+isin34π)=22(−21−i23)=−2−i6k=3:z=22(cos11π6+isin11π6)=22(32−i12)=6−i2k=3: z = 2\sqrt{2} (\cos \frac{11\pi}{6} + i\sin \frac{11\pi}{6}) = 2\sqrt{2} (\frac{\sqrt{3}}{2} - i\frac{1}{2}) = \sqrt{6} - i\sqrt{2}k=3:z=22(cos611π+isin611π)=22(23−i21)=6−i23. 最終的な答え(1) z=3,−32+i332,−32−i332z = 3, -\frac{3}{2} + i\frac{3\sqrt{3}}{2}, -\frac{3}{2} - i\frac{3\sqrt{3}}{2}z=3,−23+i233,−23−i233(2) z=32+i2,i,−32+i2,−32−i2,−i,32−i2z = \frac{\sqrt{3}}{2} + \frac{i}{2}, i, -\frac{\sqrt{3}}{2} + \frac{i}{2}, -\frac{\sqrt{3}}{2} - \frac{i}{2}, -i, \frac{\sqrt{3}}{2} - \frac{i}{2}z=23+2i,i,−23+2i,−23−2i,−i,23−2i(3) z=2i,−3−i,3−iz = 2i, -\sqrt{3} - i, \sqrt{3} - iz=2i,−3−i,3−i(4) z=2+i6,−6+i2,−2−i6,6−i2z = \sqrt{2} + i\sqrt{6}, -\sqrt{6} + i\sqrt{2}, -\sqrt{2} - i\sqrt{6}, \sqrt{6} - i\sqrt{2}z=2+i6,−6+i2,−2−i6,6−i2