$x = \frac{\sqrt{3}+1}{\sqrt{3}-1}$, $y = \frac{\sqrt{3}-1}{\sqrt{3}+1}$ のとき、$xy$ の値、$x+y$ の値、$x^3+y^3$ の値を求めよ。代数学式の計算有理化展開因数分解対称式2025/6/71. 問題の内容x=3+13−1x = \frac{\sqrt{3}+1}{\sqrt{3}-1}x=3−13+1, y=3−13+1y = \frac{\sqrt{3}-1}{\sqrt{3}+1}y=3+13−1 のとき、xyxyxy の値、x+yx+yx+y の値、x3+y3x^3+y^3x3+y3 の値を求めよ。2. 解き方の手順まず、xyxyxy の値を計算する。xy=3+13−1×3−13+1=1xy = \frac{\sqrt{3}+1}{\sqrt{3}-1} \times \frac{\sqrt{3}-1}{\sqrt{3}+1} = 1xy=3−13+1×3+13−1=1次に、x+yx+yx+y の値を計算する。x=3+13−1=(3+1)(3+1)(3−1)(3+1)=3+23+13−1=4+232=2+3x = \frac{\sqrt{3}+1}{\sqrt{3}-1} = \frac{(\sqrt{3}+1)(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)} = \frac{3 + 2\sqrt{3} + 1}{3-1} = \frac{4+2\sqrt{3}}{2} = 2+\sqrt{3}x=3−13+1=(3−1)(3+1)(3+1)(3+1)=3−13+23+1=24+23=2+3y=3−13+1=(3−1)(3−1)(3+1)(3−1)=3−23+13−1=4−232=2−3y = \frac{\sqrt{3}-1}{\sqrt{3}+1} = \frac{(\sqrt{3}-1)(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)} = \frac{3 - 2\sqrt{3} + 1}{3-1} = \frac{4-2\sqrt{3}}{2} = 2-\sqrt{3}y=3+13−1=(3+1)(3−1)(3−1)(3−1)=3−13−23+1=24−23=2−3x+y=(2+3)+(2−3)=4x+y = (2+\sqrt{3}) + (2-\sqrt{3}) = 4x+y=(2+3)+(2−3)=4最後に、x3+y3x^3+y^3x3+y3 の値を計算する。x3+y3=(x+y)(x2−xy+y2)=(x+y)((x+y)2−3xy)x^3+y^3 = (x+y)(x^2-xy+y^2) = (x+y)((x+y)^2 - 3xy)x3+y3=(x+y)(x2−xy+y2)=(x+y)((x+y)2−3xy)x+y=4x+y = 4x+y=4xy=1xy = 1xy=1x3+y3=4(42−3(1))=4(16−3)=4(13)=52x^3+y^3 = 4(4^2 - 3(1)) = 4(16-3) = 4(13) = 52x3+y3=4(42−3(1))=4(16−3)=4(13)=523. 最終的な答えxy=1xy = 1xy=1x+y=4x+y = 4x+y=4x3+y3=52x^3+y^3 = 52x3+y3=52