与えられた4つの行列の行列式を計算します。代数学行列式線形代数行列2025/6/6はい、承知いたしました。行列式の問題を解きます。1. 問題の内容与えられた4つの行列の行列式を計算します。2. 解き方の手順(1)行列 AAA はA=∣a0b00c0de0f00g0h∣A = \begin{vmatrix} a & 0 & b & 0 \\ 0 & c & 0 & d \\ e & 0 & f & 0 \\ 0 & g & 0 & h \end{vmatrix}A=a0e00c0gb0f00d0h第2列で展開すると∣A∣=c∣ab0ef000h∣−g∣ab00d0ef0∣=ch∣abef∣−g⋅0=ch(af−be)|A| = c \begin{vmatrix} a & b & 0 \\ e & f & 0 \\ 0 & 0 & h \end{vmatrix} - g \begin{vmatrix} a & b & 0 \\ 0 & d & 0 \\ e & f & 0 \end{vmatrix} = c h \begin{vmatrix} a & b \\ e & f \end{vmatrix} - g \cdot 0 = ch(af - be)∣A∣=cae0bf000h−ga0ebdf000=chaebf−g⋅0=ch(af−be)∣A∣=ch(af−be)|A| = ch(af-be)∣A∣=ch(af−be)(2)行列 AAA はA=∣1a0ba0b00b0cb0c1∣A = \begin{vmatrix} 1 & a & 0 & b \\ a & 0 & b & 0 \\ 0 & b & 0 & c \\ b & 0 & c & 1 \end{vmatrix}A=1a0ba0b00b0cb0c1第1列で展開すると∣A∣=1∣0b0b0c0c1∣−a∣ab0b0cbc1∣+0−b∣a0bbb000c∣|A| = 1 \begin{vmatrix} 0 & b & 0 \\ b & 0 & c \\ 0 & c & 1 \end{vmatrix} - a \begin{vmatrix} a & b & 0 \\ b & 0 & c \\ b & c & 1 \end{vmatrix} + 0 - b \begin{vmatrix} a & 0 & b \\ b & b & 0 \\ 0 & 0 & c \end{vmatrix}∣A∣=10b0b0c0c1−aabbb0c0c1+0−bab00b0b0c∣A∣=1(−b(b−0))−a(a(0−c2)−b(b−bc))−b(c(ab−b2))=−b2−a(−ac2−b2+b2c)−b(abc−b2c)=−b2+a2c2+ab2−ab2c−ab2c+b3c=−b2+a2c2+ab2−2ab2c+b3c|A| = 1(-b(b-0)) - a(a(0-c^2) - b(b-bc)) - b(c(ab-b^2)) = -b^2 - a(-ac^2 -b^2+b^2c) -b(abc-b^2c) = -b^2 + a^2c^2 + ab^2 - ab^2c - ab^2c + b^3c = -b^2 + a^2c^2 + ab^2 - 2ab^2c + b^3c∣A∣=1(−b(b−0))−a(a(0−c2)−b(b−bc))−b(c(ab−b2))=−b2−a(−ac2−b2+b2c)−b(abc−b2c)=−b2+a2c2+ab2−ab2c−ab2c+b3c=−b2+a2c2+ab2−2ab2c+b3c∣0b0b0c0c1∣=0−b(b−0)+0=−b2 \begin{vmatrix} 0 & b & 0 \\ b & 0 & c \\ 0 & c & 1 \end{vmatrix} = 0 - b(b-0) + 0 = -b^20b0b0c0c1=0−b(b−0)+0=−b2∣ab0b0cbc1∣=a(0−c2)−b(b−bc)+0=−ac2−b2+b2c \begin{vmatrix} a & b & 0 \\ b & 0 & c \\ b & c & 1 \end{vmatrix} = a(0-c^2) - b(b-bc) + 0 = -ac^2 -b^2 + b^2cabbb0c0c1=a(0−c2)−b(b−bc)+0=−ac2−b2+b2c∣a0bbb000c∣=c(ab−0)=abc \begin{vmatrix} a & 0 & b \\ b & b & 0 \\ 0 & 0 & c \end{vmatrix} = c(ab-0) = abcab00b0b0c=c(ab−0)=abc∣A∣=−b2−a(−ac2−b2+b2c)−b(abc)=−b2+a2c2+ab2−ab2c−ab2c=−b2+a2c2+ab2−2ab2c|A| = -b^2 -a(-ac^2-b^2+b^2c) -b(abc) = -b^2 + a^2c^2 + ab^2 - ab^2c - ab^2c = -b^2 + a^2c^2 + ab^2 -2ab^2c∣A∣=−b2−a(−ac2−b2+b2c)−b(abc)=−b2+a2c2+ab2−ab2c−ab2c=−b2+a2c2+ab2−2ab2c∣A∣=a2c2−b2−2ab2c+ab2|A| = a^2c^2 - b^2 - 2ab^2c + ab^2∣A∣=a2c2−b2−2ab2c+ab2(3)行列 AAA はA=∣a0bc0d00ef0g0hi0∣A = \begin{vmatrix} a & 0 & b & c \\ 0 & d & 0 & 0 \\ e & f & 0 & g \\ 0 & h & i & 0 \end{vmatrix}A=a0e00dfhb00ic0g0第2行で展開すると∣A∣=−d∣abce0g0i0∣=−d(−b(−ei)+i(ag−ec))=d(bei)−dih(ag−ec)|A| = -d \begin{vmatrix} a & b & c \\ e & 0 & g \\ 0 & i & 0 \end{vmatrix} = -d(-b(-ei) + i(ag-ec)) = d(bei) - dih(ag-ec)∣A∣=−dae0b0icg0=−d(−b(−ei)+i(ag−ec))=d(bei)−dih(ag−ec)∣A∣=−d(a(0−ig)−b(e0)+c(ei−0))=−d(−aig+cei)|A| = -d(a(0 - ig) -b(e0) + c(ei-0)) = -d(-aig + cei)∣A∣=−d(a(0−ig)−b(e0)+c(ei−0))=−d(−aig+cei)∣A∣=d(agi−cei)|A| = d(agi - cei)∣A∣=d(agi−cei)(4)行列 AAA はA=∣0ab0de000fghi001∣A = \begin{vmatrix} 0 & a & b & 0 \\ d & e & 0 & 0 \\ 0 & f & g & h \\ i & 0 & 0 & 1 \end{vmatrix}A=0d0iaef0b0g000h1第4行で展開すると∣A∣=−i∣ab0e00fgh∣+1∣0abde00fg∣=−i(−e(bh))+(0−d(ag−bf))−h=iebh−adg+bdf|A| = -i \begin{vmatrix} a & b & 0 \\ e & 0 & 0 \\ f & g & h \end{vmatrix} + 1 \begin{vmatrix} 0 & a & b \\ d & e & 0 \\ 0 & f & g \end{vmatrix} = -i(-e(bh)) + (0 - d(ag-bf)) -h = iebh - adg+bdf∣A∣=−iaefb0g00h+10d0aefb0g=−i(−e(bh))+(0−d(ag−bf))−h=iebh−adg+bdf∣A∣=i(a00−bh0)=(0−d(ag−bf))+1(0)|A| = i(a00 - bh0) = (0-d(ag-bf)) + 1(0) ∣A∣=i(a00−bh0)=(0−d(ag−bf))+1(0)∣A∣=iebh−dag+dbf|A| = iebh - dag+dbf∣A∣=iebh−dag+dbf∣A∣=b(ief+d(−ag))+adf=b(ef−ag)|A| = b(ief+d (-ag)) + adf = b(ef-ag)∣A∣=b(ief+d(−ag))+adf=b(ef−ag)3. 最終的な答え(1) ch(af−be)ch(af-be)ch(af−be)(2) a2c2−b2−2ab2c+ab2a^2c^2 - b^2 - 2ab^2c + ab^2a2c2−b2−2ab2c+ab2(3) d(agi−cei)d(agi-cei)d(agi−cei)(4) iebh−dag+bdfiebh-dag+bdfiebh−dag+bdf