整数 $n$ について、$n^2$ が 3 の倍数ならば、$n$ も 3 の倍数であることを証明する。

数論整数の性質倍数背理法証明
2025/6/7

1. 問題の内容

整数 nn について、n2n^2 が 3 の倍数ならば、nn も 3 の倍数であることを証明する。

2. 解き方の手順

背理法を用いて証明する。
(1) nn が 3 の倍数でないと仮定する。
このとき、nn3k+13k+1 または 3k+23k+2kk は整数)のいずれかの形で表せる。
(2) n=3k+1n=3k+1 のとき、
n2=(3k+1)2=9k2+6k+1=3(3k2+2k)+1n^2 = (3k+1)^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1 となる。
これは3で割ると1余る数なので、3の倍数ではない。
(3) n=3k+2n=3k+2 のとき、
n2=(3k+2)2=9k2+12k+4=9k2+12k+3+1=3(3k2+4k+1)+1n^2 = (3k+2)^2 = 9k^2 + 12k + 4 = 9k^2 + 12k + 3 + 1 = 3(3k^2 + 4k + 1) + 1 となる。
これも3で割ると1余る数なので、3の倍数ではない。
(4) よって、nn が 3 の倍数でないならば、n2n^2 も 3 の倍数ではない。これは、n2n^2 が 3 の倍数であるという仮定に矛盾する。
(5) したがって、n2n^2 が 3 の倍数ならば、nn も 3 の倍数である。

3. 最終的な答え

n2n^2 が 3 の倍数ならば、nn も 3 の倍数である。(証明終わり)

「数論」の関連問題

整数 $x$ について、命題「$x$ が 6 の倍数ならば、$x$ は 2 の倍数である」が真であるか偽であるかを判定する。

倍数整数の性質命題真偽
2025/6/7

与えられた3つの数について、それぞれの正の約数の個数と、その約数の総和を求める問題です。 (1) $5 \cdot 2^3$ (2) $108$ (3) $540$

約数素因数分解約数の個数約数の総和
2025/6/7

与えられた情報から、群数列の第 $n$ 群の最初の項が $n^2 - n + 1$ であることが導出される過程を確認し、それが $n=1$ の場合にも成り立つことを確認する。

群数列数列数学的帰納法
2025/6/6

整数 $n$ について、$n^2$ が3の倍数ならば、$n$ も3の倍数であることを証明する。

整数の性質倍数証明背理法
2025/6/6

整数 $n$ について、$n^2$ が奇数ならば、$n$ が奇数であることを証明するために、その対偶である「$n$が偶数ならば、$n^2$は偶数である」を証明する穴埋め問題です。

整数対偶証明偶数奇数
2025/6/6

正の整数 $a, b, c$ に対して、$M = 3^a + 3^b + 3^c + 1$ とする。 (1) $a < b = c \le 10$ を満たす $a, b, c$ の組で、$M$ が立方...

整数の性質べき乗立方数方程式
2025/6/6

自然数の列がいくつかの群に分けられている。第 $n$ 群には $2^{n-1}$ 個の数が入る。 (1) $n \ge 2$ のとき、第 $n$ 群の最初の数を $n$ の式で表す。 (2) 第 $n...

数列等比数列等差数列自然数
2025/6/6

$a_1, a_2, a_3, a_4, a_5$は正の整数で、$a_1 < a_2 < a_3 < a_4 < a_5$とする。 2つの集合$A = \{a_1, a_2, a_3, a_4, a_...

集合整数の性質方程式場合分け
2025/6/6

与えられた数について、正の約数の個数と、その約数の総和を求める問題です。 (1) $5 \cdot 2^3$ (2) 108 (3) 540

約数素因数分解約数の個数約数の総和
2025/6/6

与えられた3つの数について、正の約数の個数と、それらの約数の総和をそれぞれ求める問題です。 (1) $5 \cdot 2^3$ (2) $108$ (3) $540$

約数素因数分解約数の個数約数の総和
2025/6/6