直角三角形を用いて、$0 < x < 1$ のとき、次の等式を証明する問題です。 $$\sin^{-1} x = \cos^{-1} \sqrt{1 - x^2}$$

幾何学三角関数逆三角関数直角三角形証明
2025/6/7

1. 問題の内容

直角三角形を用いて、0<x<10 < x < 1 のとき、次の等式を証明する問題です。
sin1x=cos11x2\sin^{-1} x = \cos^{-1} \sqrt{1 - x^2}

2. 解き方の手順

まず、与えられた直角三角形ABCにおいて、ABC=y\angle ABC = y とします。
定義より、siny=ACAB=x1=x\sin y = \frac{AC}{AB} = \frac{x}{1} = x です。
したがって、y=sin1xy = \sin^{-1} x が成り立ちます。
次に、cosy\cos y を求めます。
直角三角形ABCにおいて、cosy=BCAB=1x21=1x2\cos y = \frac{BC}{AB} = \frac{\sqrt{1 - x^2}}{1} = \sqrt{1 - x^2} です。
したがって、y=cos11x2y = \cos^{-1} \sqrt{1 - x^2} が成り立ちます。
以上の議論から、y=sin1xy = \sin^{-1} x かつ y=cos11x2y = \cos^{-1} \sqrt{1 - x^2} であるため、
sin1x=cos11x2\sin^{-1} x = \cos^{-1} \sqrt{1 - x^2}
が証明されました。

3. 最終的な答え

sin1x=cos11x2\sin^{-1} x = \cos^{-1} \sqrt{1 - x^2}

「幾何学」の関連問題

直線 $l$ の媒介変数表示が $x = 1 - 3t$, $y = -2 + 2t$ で与えられているとき、$x$ と $y$ の関係式で表された直線 $l$ の方程式を求める。

直線媒介変数表示方程式
2025/6/7

$\triangle ABC$ において、辺 $BC, CA, AB$ の中点をそれぞれ $L, M, N$ とする。任意の点 $O$ に対して、 $\vec{OA} + \vec{OB} + \ve...

ベクトル三角形中点ベクトル和
2025/6/7

$\triangle OAB$において、辺$OA$を$3:2$に内分する点を$C$、辺$OB$を$2:5$に内分する点を$D$とする。線分$AD$と線分$BC$の交点を$P$とする。$\vec{OA}...

ベクトル内分一次独立ベクトルの分解
2025/6/7

座標平面上の4点 $A(-1, 0)$, $B(1, 0)$, $P(-1, 3)$, $Q(1, 1)$ が与えられています。線分 $PQ$ 上に点 $R$ があり、$R$ の $x$ 座標は $a...

座標平面外接円垂直二等分線線分三角形
2025/6/7

正九角形の頂点から3点を選んで三角形を作る。以下の個数を求めよ。 (1) 作れる三角形の総数 (2) 正九角形と2辺を共有する三角形の数 (3) 正九角形と1辺を共有する三角形の数 (4) 正九角形と...

組み合わせ多角形三角形正多角形
2025/6/7

座標平面上の4点A(-1, 0), B(1, 0), P(-1, 3), Q(1, 1)が与えられている。線分PQ上に点Rがあり、そのx座標は$a$である。三角形ABRの外接円をCとし、その中心をSと...

座標平面外接円垂直二等分線線分の距離直線の方程式
2025/6/7

座標平面上の4点 $A(-1, 0)$, $B(1, 0)$, $P(-1, 3)$, $Q(1, 1)$ が与えられています。線分 $PQ$ 上に点 $R$ をとり、その $x$ 座標を $a$ と...

座標平面外接円線分垂直二等分線三角形
2025/6/7

座標平面上に4点 A(-1, 0), B(1, 0), P(-1, 3), Q(1, 1) がある。線分 PQ 上に点 R をとり、その x 座標を a とする。さらに、三角形 ABR の外接円を C...

座標平面外接円線分の垂直二等分線方程式
2025/6/7

7本の平行線と6本の平行線が交わってできた図形の中に、平行四辺形がいくつあるかを求める問題です。

平行四辺形組み合わせ図形
2025/6/7

(4) 直径10cmの円Aと直径24cmの円Bがある。これらの円の面積の和と等しい面積を持つ円を作る場合、その円の直径を求める問題です。 (5) 数直線上の点A,B,C,Dのそれぞれが表す値が与えられ...

面積平方根数直線
2025/6/7