$\arcsin(\cos(\frac{16\pi}{5}))$ を計算します。解析学三角関数逆三角関数弧度法2025/6/71. 問題の内容arcsin(cos(16π5))\arcsin(\cos(\frac{16\pi}{5}))arcsin(cos(516π)) を計算します。2. 解き方の手順まず、cos(16π5)\cos(\frac{16\pi}{5})cos(516π) の値を求めます。16π5=15π+π5=3π+π5\frac{16\pi}{5} = \frac{15\pi + \pi}{5} = 3\pi + \frac{\pi}{5}516π=515π+π=3π+5π と変形できます。cos(3π+π5)=cos(π+2π+π5)=cos(π+π5)=−cos(π5)\cos(3\pi + \frac{\pi}{5}) = \cos(\pi + 2\pi + \frac{\pi}{5}) = \cos(\pi + \frac{\pi}{5}) = -\cos(\frac{\pi}{5})cos(3π+5π)=cos(π+2π+5π)=cos(π+5π)=−cos(5π) となります。次に、cos(π5)\cos(\frac{\pi}{5})cos(5π) の値を計算します。cos(π5)=cos(36∘)=1+54\cos(\frac{\pi}{5}) = \cos(36^\circ) = \frac{1 + \sqrt{5}}{4}cos(5π)=cos(36∘)=41+5 です。したがって、cos(16π5)=−1+54\cos(\frac{16\pi}{5}) = -\frac{1 + \sqrt{5}}{4}cos(516π)=−41+5 となります。ここで、arcsin(x)\arcsin(x)arcsin(x) の値域は [−π2,π2][-\frac{\pi}{2}, \frac{\pi}{2}][−2π,2π] であることに注意します。arcsin(−1+54)\arcsin(-\frac{1 + \sqrt{5}}{4})arcsin(−41+5) を計算します。sin(−3π10)=−sin(3π10)=−sin(54∘)=−cos(36∘)=−1+54\sin(-\frac{3\pi}{10}) = -\sin(\frac{3\pi}{10}) = -\sin(54^\circ) = -\cos(36^\circ) = -\frac{1 + \sqrt{5}}{4}sin(−103π)=−sin(103π)=−sin(54∘)=−cos(36∘)=−41+5 です。したがって、arcsin(cos(16π5))=arcsin(−1+54)=−3π10\arcsin(\cos(\frac{16\pi}{5})) = \arcsin(-\frac{1 + \sqrt{5}}{4}) = -\frac{3\pi}{10}arcsin(cos(516π))=arcsin(−41+5)=−103π となります。cos(16π5)=cos(3π+π5)=−cos(π5)\cos(\frac{16\pi}{5}) = \cos(3\pi + \frac{\pi}{5}) = -\cos(\frac{\pi}{5})cos(516π)=cos(3π+5π)=−cos(5π)cos(π5)=1+54\cos(\frac{\pi}{5}) = \frac{1+\sqrt{5}}{4}cos(5π)=41+5arcsin(cos(16π5))=arcsin(−1+54)\arcsin(\cos(\frac{16\pi}{5})) = \arcsin(-\frac{1+\sqrt{5}}{4})arcsin(cos(516π))=arcsin(−41+5)sin(−3π10)=−sin(3π10)=−1+54\sin(-\frac{3\pi}{10}) = -\sin(\frac{3\pi}{10}) = -\frac{1+\sqrt{5}}{4}sin(−103π)=−sin(103π)=−41+53. 最終的な答え−3π10-\frac{3\pi}{10}−103π