不定積分 $\int \frac{\cos(x)}{1-\cos(x)} dx$ を求めよ。ただし、積分定数は $C$ を用いること。解析学不定積分三角関数積分置換積分2025/6/81. 問題の内容不定積分 ∫cos(x)1−cos(x)dx\int \frac{\cos(x)}{1-\cos(x)} dx∫1−cos(x)cos(x)dx を求めよ。ただし、積分定数は CCC を用いること。2. 解き方の手順まず、被積分関数を変形する。cos(x)1−cos(x)=cos(x)−1+11−cos(x)=cos(x)−11−cos(x)+11−cos(x)=−1+11−cos(x)\frac{\cos(x)}{1-\cos(x)} = \frac{\cos(x)-1+1}{1-\cos(x)} = \frac{\cos(x)-1}{1-\cos(x)} + \frac{1}{1-\cos(x)} = -1 + \frac{1}{1-\cos(x)}1−cos(x)cos(x)=1−cos(x)cos(x)−1+1=1−cos(x)cos(x)−1+1−cos(x)1=−1+1−cos(x)1次に、11−cos(x)\frac{1}{1-\cos(x)}1−cos(x)1 を変形する。11−cos(x)=11−cos(x)⋅1+cos(x)1+cos(x)=1+cos(x)1−cos2(x)=1+cos(x)sin2(x)=1sin2(x)+cos(x)sin2(x)\frac{1}{1-\cos(x)} = \frac{1}{1-\cos(x)} \cdot \frac{1+\cos(x)}{1+\cos(x)} = \frac{1+\cos(x)}{1-\cos^2(x)} = \frac{1+\cos(x)}{\sin^2(x)} = \frac{1}{\sin^2(x)} + \frac{\cos(x)}{\sin^2(x)}1−cos(x)1=1−cos(x)1⋅1+cos(x)1+cos(x)=1−cos2(x)1+cos(x)=sin2(x)1+cos(x)=sin2(x)1+sin2(x)cos(x)=csc2(x)+cos(x)sin2(x)= \csc^2(x) + \frac{\cos(x)}{\sin^2(x)}=csc2(x)+sin2(x)cos(x)したがって、cos(x)1−cos(x)=−1+csc2(x)+cos(x)sin2(x)\frac{\cos(x)}{1-\cos(x)} = -1 + \csc^2(x) + \frac{\cos(x)}{\sin^2(x)}1−cos(x)cos(x)=−1+csc2(x)+sin2(x)cos(x)ここで、∫csc2(x)dx=−cot(x)+C\int \csc^2(x) dx = -\cot(x) + C∫csc2(x)dx=−cot(x)+C であり、∫cos(x)sin2(x)dx\int \frac{\cos(x)}{\sin^2(x)} dx∫sin2(x)cos(x)dx を計算するために、u=sin(x)u = \sin(x)u=sin(x) と置換すると、du=cos(x)dxdu = \cos(x) dxdu=cos(x)dx となり、∫cos(x)sin2(x)dx=∫1u2du=−1u+C=−1sin(x)+C=−csc(x)+C\int \frac{\cos(x)}{\sin^2(x)} dx = \int \frac{1}{u^2} du = -\frac{1}{u} + C = -\frac{1}{\sin(x)} + C = -\csc(x) + C∫sin2(x)cos(x)dx=∫u21du=−u1+C=−sin(x)1+C=−csc(x)+Cしたがって、∫cos(x)1−cos(x)dx=∫(−1+csc2(x)+cos(x)sin2(x))dx=−x−cot(x)−csc(x)+C\int \frac{\cos(x)}{1-\cos(x)} dx = \int \left(-1 + \csc^2(x) + \frac{\cos(x)}{\sin^2(x)}\right) dx = -x - \cot(x) - \csc(x) + C∫1−cos(x)cos(x)dx=∫(−1+csc2(x)+sin2(x)cos(x))dx=−x−cot(x)−csc(x)+C3. 最終的な答え∫cos(x)1−cos(x)dx=−x−cot(x)−csc(x)+C\int \frac{\cos(x)}{1-\cos(x)} dx = -x - \cot(x) - \csc(x) + C∫1−cos(x)cos(x)dx=−x−cot(x)−csc(x)+C