以下の極限を求める問題です。 $\lim_{x \to 0} \frac{e^x - 1 - x\sqrt{x+1}}{x^3}$解析学極限テイラー展開指数関数べき乗根2025/6/81. 問題の内容以下の極限を求める問題です。limx→0ex−1−xx+1x3\lim_{x \to 0} \frac{e^x - 1 - x\sqrt{x+1}}{x^3}limx→0x3ex−1−xx+12. 解き方の手順この極限を求めるために、テイラー展開を利用します。exe^xex、x+1 \sqrt{x+1}x+1をx=0x=0x=0の周りでテイラー展開します。ex=1+x+x22!+x33!+O(x4)e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + O(x^4)ex=1+x+2!x2+3!x3+O(x4)x+1=1+12x−18x2+116x3+O(x4)\sqrt{x+1} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + O(x^4)x+1=1+21x−81x2+161x3+O(x4)xx+1=x+12x2−18x3+116x4+O(x5)x\sqrt{x+1} = x + \frac{1}{2}x^2 - \frac{1}{8}x^3 + \frac{1}{16}x^4 + O(x^5)xx+1=x+21x2−81x3+161x4+O(x5)したがって、ex−1−xx+1=(1+x+x22+x36+O(x4))−1−(x+12x2−18x3+O(x4))=x36+x38+O(x4)=724x3+O(x4)e^x - 1 - x\sqrt{x+1} = (1 + x + \frac{x^2}{2} + \frac{x^3}{6} + O(x^4)) - 1 - (x + \frac{1}{2}x^2 - \frac{1}{8}x^3 + O(x^4)) = \frac{x^3}{6} + \frac{x^3}{8} + O(x^4) = \frac{7}{24}x^3 + O(x^4)ex−1−xx+1=(1+x+2x2+6x3+O(x4))−1−(x+21x2−81x3+O(x4))=6x3+8x3+O(x4)=247x3+O(x4)したがって、limx→0ex−1−xx+1x3=limx→0724x3+O(x4)x3=724\lim_{x \to 0} \frac{e^x - 1 - x\sqrt{x+1}}{x^3} = \lim_{x \to 0} \frac{\frac{7}{24}x^3 + O(x^4)}{x^3} = \frac{7}{24}limx→0x3ex−1−xx+1=limx→0x3247x3+O(x4)=2473. 最終的な答え724\frac{7}{24}247