与えられた方程式は、$ \frac{4x - 15}{5} = \frac{1}{2}x $ です。この方程式を解いて、$x$ の値を求めます。

代数学一次方程式方程式代数
2025/6/8

1. 問題の内容

与えられた方程式は、4x155=12x \frac{4x - 15}{5} = \frac{1}{2}x です。この方程式を解いて、xx の値を求めます。

2. 解き方の手順

まず、方程式の両辺に 5 を掛けます。
4x15=52x4x - 15 = \frac{5}{2}x
次に、両辺に 2 を掛けます。
2(4x15)=5x2(4x - 15) = 5x
8x30=5x8x - 30 = 5x
5x5x を左辺に移項します。
8x5x=308x - 5x = 30
3x=303x = 30
最後に、両辺を 3 で割ります。
x=303x = \frac{30}{3}
x=10x = 10

3. 最終的な答え

x=10x = 10

「代数学」の関連問題

与えられた方程式 $x^2 = (2x+1)(x+2)$ を解き、$x$の値を求める。

二次方程式方程式解の公式
2025/6/8

与えられた二次方程式 $x^2 - \sqrt{5}x + 2 = 0$ の解を求める問題です。

二次方程式解の公式複素数
2025/6/8

与えられた方程式 $(2x - 3)^2 = -5$ を解いて、$x$ の値を求めます。

二次方程式複素数方程式の解
2025/6/8

与えられた3つの2次関数 $y=x^2$, $y=\frac{1}{4}x^2$, $y=\frac{5}{2}x^2$ のグラフが、図のA, B, Cのどれに対応するかを答える問題です。

二次関数グラフ放物線関数の対応
2025/6/8

与えられた6つの関数: 1. $y=x^2$

二次関数グラフ関数
2025/6/8

$y$ は $x$ の2乗に比例し、$x = 3$ のとき $y = -54$ である。このとき、次の問いに答えなさい。 (1) $y$ を $x$ の式で表すと $y = - コ x^2$ (2) ...

比例二次関数方程式
2025/6/8

底辺が $x$ cmで、高さが底辺より2cm長い三角形の面積を$y$ cm$^2$とするとき、$y$を$x$の式で表し、$y$が$x$の2乗に比例するかどうかを答える。比例する場合は①、そうでない場合...

二次関数面積比例
2025/6/8

ある斜面で球を転がし、1秒ごとに転がった距離を記録した。転がり始めてから$x$秒間に転がる距離を$y$mとするとき、$x$と$y$の関係を表す表が与えられている。転がり始めてから6秒間に転がる距離を求...

二次関数比例物理
2025/6/8

ある斜面で球を転がしたとき、転がり始めてから $x$ 秒間に転がる距離を $y$ mとします。$y$ が $x$ の2乗に比例するとき、$y$ を $x$ の式で表しなさい。つまり、$y = アx^2...

比例二次関数数式
2025/6/8

横が縦より5cm長い長方形の厚紙がある。この4つの角から1辺が2cmの正方形を切り取り、直方体の容器を作ると、その容積は1092 cm³になる。はじめの厚紙の縦と横の長さを求める。

二次方程式文章題体積長方形
2025/6/8