関数 $f(x) = -3x^3 + x^2 + 3$ の導関数 $f'(x)$ を求め、さらに $x=-2$ および $x=1$ における $f'(x)$ の値を求めよ。

解析学導関数微分関数の微分
2025/3/27

1. 問題の内容

関数 f(x)=3x3+x2+3f(x) = -3x^3 + x^2 + 3 の導関数 f(x)f'(x) を求め、さらに x=2x=-2 および x=1x=1 における f(x)f'(x) の値を求めよ。

2. 解き方の手順

まず、導関数 f(x)f'(x) を求める。
f(x)=3x3+x2+3f(x) = -3x^3 + x^2 + 3 を微分する。
各項ごとに微分すると、
ddx(3x3)=33x2=9x2\frac{d}{dx}(-3x^3) = -3 \cdot 3x^2 = -9x^2
ddx(x2)=2x\frac{d}{dx}(x^2) = 2x
ddx(3)=0\frac{d}{dx}(3) = 0
したがって、導関数 f(x)f'(x)
f(x)=9x2+2xf'(x) = -9x^2 + 2x
次に、x=2x = -2 のときの f(2)f'(-2) を求める。
f(2)=9(2)2+2(2)=9(4)4=364=40f'(-2) = -9(-2)^2 + 2(-2) = -9(4) - 4 = -36 - 4 = -40
最後に、x=1x = 1 のときの f(1)f'(1) を求める。
f(1)=9(1)2+2(1)=9+2=7f'(1) = -9(1)^2 + 2(1) = -9 + 2 = -7

3. 最終的な答え

導関数の式: f(x)=9x2+2xf'(x) = -9x^2 + 2x
x=2x = -2 のときの傾き: 40-40
x=1x = 1 のときの傾き: 7-7

「解析学」の関連問題

問題は、$\lim_{x \to +0} x (\log x)^n$ を計算することです。ただし、画像には「なぜ $x \to +0$ が $t \to \infty$ となるのですか?」という質問も...

極限対数関数ロピタルの定理関数の極限
2025/4/8

$x > 0$ のとき、$e^x > 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$ が成り立つと仮定したとき、$e^x > 1...

テイラー展開数学的帰納法指数関数不等式
2025/4/8

## 解答

不等式極限数学的帰納法マクローリン展開
2025/4/8

(1) $n$ を0以上の整数、$x > 0$とするとき、以下の不等式が成り立つことを示す問題です。 $e^x > 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots ...

不等式極限数学的帰納法ロピタルの定理指数関数対数関数
2025/4/8

与えられた数列の和を求める問題です。具体的には、以下の6つの和を計算します。 (1) $\sum_{k=1}^{n} (2k-7)$ (2) $\sum_{k=1}^{n} 3^k$ (3) $\su...

数列級数シグマ等比数列部分分数分解
2025/4/8

画像にある数学の問題を解きます。具体的には、以下の問題です。 (6) 不等式 $9^x > 3^{3x+1}$ を解く。 (7) 方程式 $\log_2(x+1) + \log_2(x-2) = 2$...

不等式対数微分極値積分
2025/4/8

3次関数 $y = 2x^3 + x^2 - 2x - 1$ について、以下の問いに答えます。 (1) 曲線とx軸の共有点のx座標を求めます。 (2) $y \ge 0$ となるxの区間を求めます。 ...

3次関数積分面積因数分解
2025/4/8

(1) 放物線 $y = x^2$ と直線 $y = 2x + 3$ で囲まれた部分の面積を求めます。 (2) 2つの放物線 $y = 2x^2 - 9x - 12$ ($1 \le x \le 5$...

定積分面積放物線積分
2025/4/8

与えられた放物線とx軸、そして指定された直線で囲まれた部分の面積を計算する問題です。具体的には、以下の3つの小問があります。 (1) 放物線 $y = 3x^2 - 4x + 5$ とx軸、直線 $x...

積分面積放物線定積分
2025/4/8

与えられた4つの定積分を計算する問題です。 (1) $\int_{1}^{2} (3x^2 + 4x - 5) dx$ (2) $2\int_{1}^{3} (x-1) dx - \int_{1}^{...

定積分積分積分計算
2025/4/8