関数 $y = 4x^2 - x - 9$ のグラフ上の点 $(-2, 9)$ における接線の式を求める問題です。

解析学微分接線導関数関数のグラフ
2025/3/27

1. 問題の内容

関数 y=4x2x9y = 4x^2 - x - 9 のグラフ上の点 (2,9)(-2, 9) における接線の式を求める問題です。

2. 解き方の手順

まず、与えられた関数の導関数を求めます。導関数は、その点における接線の傾きを表します。
y=4x2x9y = 4x^2 - x - 9 を微分すると、
y=8x1y' = 8x - 1
となります。
次に、点 (2,9)(-2, 9) における接線の傾きを求めます。これは、導関数に x=2x = -2 を代入することで得られます。
y(2)=8(2)1=161=17y'(-2) = 8(-2) - 1 = -16 - 1 = -17
したがって、接線の傾きは 17-17 です。
最後に、点 (2,9)(-2, 9) を通り、傾きが 17-17 の直線の方程式を求めます。
点傾斜式を用いると、yy1=m(xx1)y - y_1 = m(x - x_1) なので、
y9=17(x(2))y - 9 = -17(x - (-2))
y9=17(x+2)y - 9 = -17(x + 2)
y9=17x34y - 9 = -17x - 34
y=17x34+9y = -17x - 34 + 9
y=17x25y = -17x - 25

3. 最終的な答え

求める接線の式は y=17x25y = -17x - 25 です。

「解析学」の関連問題

問題は、与えられた関数を微分することです。特に、(1) $x \log x$ と (5) $\frac{\log x}{x^2}$ の微分を求めます。

微分対数関数積の微分商の微分
2025/6/5

次の関数を微分せよ。 (1) $x \log x$ (5) $\frac{\log x}{x^2}$

微分対数関数積の微分商の微分
2025/6/5

次の関数を微分せよ。 (1) $x \log x$ (5) $\frac{\log x}{x^2}$

微分対数関数積の微分商の微分
2025/6/5

与えられた関数の微分を求める問題です。 (1) $y = \log|x+21|$ の微分を求めます。 (2) $y = \log|\frac{x+1}{x}|$ の微分を求めます。

微分対数関数合成関数の微分
2025/6/5

$\log(\tan x)$を微分せよ。

微分対数関数合成関数の微分
2025/6/5

はい、承知しました。画像に写っている問題のうち、いくつか解いてみます。

微分対数関数指数関数合成関数の微分積の微分商の微分
2025/6/5

(3) $-1 \le \tan x < \sqrt{3}$ ($0 \le x \le 2\pi$) を満たす $x$ の範囲を求めます。 (4) $\cos^{-1} x = 3 \sin^{-1...

三角関数逆三角関数不等式方程式
2025/6/5

次の極限を求めます。 (1) $\lim_{x \to +0} \frac{1}{\log x}$ (4) $\lim_{x \to 1-0} \log(1-x)$ (7) $\lim_{x \to ...

極限対数関数発散関数
2025/6/5

与えられた関数 $y = \arctan(2x) + \pi$ のグラフの概形を描く。

グラフ逆三角関数arctan関数のグラフ漸近線
2025/6/5

与えられた関数 $\frac{e^x}{e^x+1}$ の積分を求めます。

積分指数関数置換積分不定積分
2025/6/5