$x = \frac{1}{\sqrt{5}+\sqrt{3}}$、 $y = \frac{1}{\sqrt{5}-\sqrt{3}}$ のとき、$\frac{y}{x} + \frac{x}{y}$ の値を求めなさい。代数学式の計算分母の有理化平方根式の値2025/6/81. 問題の内容x=15+3x = \frac{1}{\sqrt{5}+\sqrt{3}}x=5+31、 y=15−3y = \frac{1}{\sqrt{5}-\sqrt{3}}y=5−31 のとき、yx+xy\frac{y}{x} + \frac{x}{y}xy+yx の値を求めなさい。2. 解き方の手順まず、xxx と yyy の分母を有理化します。x=15+3=5−3(5+3)(5−3)=5−35−3=5−32x = \frac{1}{\sqrt{5}+\sqrt{3}} = \frac{\sqrt{5}-\sqrt{3}}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})} = \frac{\sqrt{5}-\sqrt{3}}{5-3} = \frac{\sqrt{5}-\sqrt{3}}{2}x=5+31=(5+3)(5−3)5−3=5−35−3=25−3y=15−3=5+3(5−3)(5+3)=5+35−3=5+32y = \frac{1}{\sqrt{5}-\sqrt{3}} = \frac{\sqrt{5}+\sqrt{3}}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})} = \frac{\sqrt{5}+\sqrt{3}}{5-3} = \frac{\sqrt{5}+\sqrt{3}}{2}y=5−31=(5−3)(5+3)5+3=5−35+3=25+3次に、yx\frac{y}{x}xy と xy\frac{x}{y}yx を計算します。yx=5+325−32=5+35−3=(5+3)2(5−3)(5+3)=5+215+35−3=8+2152=4+15\frac{y}{x} = \frac{\frac{\sqrt{5}+\sqrt{3}}{2}}{\frac{\sqrt{5}-\sqrt{3}}{2}} = \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} = \frac{(\sqrt{5}+\sqrt{3})^2}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})} = \frac{5+2\sqrt{15}+3}{5-3} = \frac{8+2\sqrt{15}}{2} = 4+\sqrt{15}xy=25−325+3=5−35+3=(5−3)(5+3)(5+3)2=5−35+215+3=28+215=4+15xy=5−325+32=5−35+3=(5−3)2(5+3)(5−3)=5−215+35−3=8−2152=4−15\frac{x}{y} = \frac{\frac{\sqrt{5}-\sqrt{3}}{2}}{\frac{\sqrt{5}+\sqrt{3}}{2}} = \frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}} = \frac{(\sqrt{5}-\sqrt{3})^2}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})} = \frac{5-2\sqrt{15}+3}{5-3} = \frac{8-2\sqrt{15}}{2} = 4-\sqrt{15}yx=25+325−3=5+35−3=(5+3)(5−3)(5−3)2=5−35−215+3=28−215=4−15最後に、yx+xy\frac{y}{x} + \frac{x}{y}xy+yx を計算します。yx+xy=(4+15)+(4−15)=4+15+4−15=8\frac{y}{x} + \frac{x}{y} = (4+\sqrt{15}) + (4-\sqrt{15}) = 4 + \sqrt{15} + 4 - \sqrt{15} = 8xy+yx=(4+15)+(4−15)=4+15+4−15=83. 最終的な答えyx+xy=8\frac{y}{x} + \frac{x}{y} = 8xy+yx=8