日本企業の海外への研究費支出額のグラフが与えられています。1989年度の支出額は1978年度の10倍であり、その2つの年度の支出額の合計が485.1億円であるとき、1978年度の支出額を求める問題です。

代数学方程式一次方程式割合
2025/6/8

1. 問題の内容

日本企業の海外への研究費支出額のグラフが与えられています。1989年度の支出額は1978年度の10倍であり、その2つの年度の支出額の合計が485.1億円であるとき、1978年度の支出額を求める問題です。

2. 解き方の手順

1978年度の研究費支出額を xx とします。
1989年度の研究費支出額は1978年度の10倍なので、10x10x となります。
問題文より、2つの年度の合計額は485.1億円なので、以下の式が成り立ちます。
x+10x=485.1x + 10x = 485.1
この式を解きます。
11x=485.111x = 485.1
x=485.111=44.1x = \frac{485.1}{11} = 44.1
したがって、1978年度の支出額は44.1億円です。

3. 最終的な答え

44.1億円

「代数学」の関連問題

画像にある連立方程式の問題すべてを解きます。問題は全部で7問あります。

連立方程式代入法方程式
2025/6/8

絶対値を含む方程式 $|x+6|=2x$ を解く過程が示されており、空欄に適切な値や記号を埋める問題です。

絶対値方程式不等式場合分け解の検証
2025/6/8

整数 $n$, 実数 $a$, $b$ があるとき、命題「$2a + 3b > 0$ ならば $a > 0$ または $b > 0$ である」を証明する。

不等式命題対偶論理
2025/6/8

方程式 $|x+6| = 2x$ を場合分けして解く問題です。空欄に当てはまる数や記号を選択肢から選びます。

絶対値方程式場合分け
2025/6/8

与えられた連立不等式を解き、空欄に当てはまる数値を答える問題です。2つの連立不等式があります。 (1) $ \begin{cases} 8x - 15 < 4x - 35 \\ 0.3x + 1 > ...

連立不等式不等式一次不等式
2025/6/8

2つの不等式を解き、それぞれの不等式を満たす $x$ の範囲を求め、解答欄に当てはまる値を答える問題です。 (1) $2(x+3) \ge 3(x+1)$ (2) $\frac{x+3}{10} - ...

不等式一次不等式計算
2025/6/8

$a < b$ のとき、以下の不等式について、空欄に当てはまる不等号(ア: <, イ: >)を答える問題です。 (1) $a-5 \quad \boxed{24} \quad b-5$ (2) $\f...

不等式不等号式の変形
2025/6/8

与えられた式 $\sqrt{7 - \sqrt{48}}$ を簡単にせよ。

平方根根号の計算式の簡単化
2025/6/8

与えられた2つの方程式を解きます。 (1) $2x^2 - 7x + 1 = 0$ (2) $x^2 - 3x - 2 = 0$

二次方程式解の公式
2025/6/8

$\sqrt{7 - \sqrt{48}}$ を簡単にしてください。

根号式の計算二重根号
2025/6/8