2つの座標 $(1, 2)$ と $(2, 1)$ を通る直線の傾きを求める問題です。

幾何学座標直線傾き一次関数
2025/6/8

1. 問題の内容

2つの座標 (1,2)(1, 2)(2,1)(2, 1) を通る直線の傾きを求める問題です。

2. 解き方の手順

直線の傾きは、2点 (x1,y1)(x_1, y_1)(x2,y2)(x_2, y_2) を通る場合、次の公式で求められます。
傾き=y2y1x2x1傾き = \frac{y_2 - y_1}{x_2 - x_1}
この問題では、(x1,y1)=(1,2)(x_1, y_1) = (1, 2)(x2,y2)=(2,1)(x_2, y_2) = (2, 1) なので、上記の公式に代入すると、
傾き=1221傾き = \frac{1 - 2}{2 - 1}
傾き=11傾き = \frac{-1}{1}
傾き=1傾き = -1

3. 最終的な答え

-1

「幾何学」の関連問題

三角形OABにおいて、辺OAを3:2に内分する点をC、辺ABを2:1に内分する点をDとする。線分BCと線分ODの交点をPとするとき、以下の問いに答える。 (1) $\vec{OD}$を$\vec{OA...

ベクトル内分点空間ベクトル
2025/6/9

ベクトル $\vec{a}$ と $\vec{b}$ の内積 $\vec{a} \cdot \vec{b}$ を以下の3つの場合について求めます。 (1) $|\vec{a}| = 2$, $|\ve...

ベクトル内積角度絶対値
2025/6/9

内積の定義 $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos{\theta}$ を用いる。

ベクトル内積ベクトルのなす角垂直ベクトル
2025/6/9

三角形OABにおいて、辺OAを3:2に内分する点をC、辺ABを2:1に内分する点をDとする。線分BCと線分ODの交点をPとするとき、以下の問いに答える。 (1) ベクトルODをベクトルOAとベクトルO...

ベクトル内分点線分の交点空間ベクトル
2025/6/9

$\vec{OP} = \vec{OC} + t\vec{CB}$ を変形して、$\vec{OP}$ を $\vec{OA}$ と $\vec{OB}$ で表します。ただし、点 C は線分 OA 上に...

ベクトル内分点ベクトルの分解
2025/6/9

$\triangle OAB$において、辺$OA$を$3:2$に内分する点を$C$、辺$AB$を$2:1$に内分する点を$D$、線分$BC$と線分$OD$の交点を$P$とする。 (1) $\overr...

ベクトル内分点空間ベクトル
2025/6/9

問題は、三角関数の定義、弧度法と度数法の関係、扇形の弧の長さと面積、一般角、三角関数の周期性など、三角関数に関する基本的な知識を問う穴埋め問題です。

三角関数弧度法度数法扇形周期性三角関数の定義
2025/6/8

2つの座標 $(1, 2)$ と $(2, 1)$ を通る直線の傾きを求める問題です。

座標直線傾き
2025/6/8

直角三角形ABCがあり、$AB = 10$ cm, $BC = 8$ cm, $AC = 6$ cmである。点PはBを出発して辺BA, AC上をBからCまで動く。点PがBから$x$ cm動いたときの三...

三角形面積関数グラフ
2025/6/8

問題22:図の斜線部分の面積を求める問題です。2つの直線 $y = 3x + 2$ と $y = -2x + 7$ で囲まれた部分の面積を計算します。

面積直線交点三角形
2025/6/8