与えられた多項式の不定積分を計算します。 積分する関数は、$12x^3 - 9x^2 + 6x - 4$ です。

解析学積分不定積分多項式
2025/3/27

1. 問題の内容

与えられた多項式の不定積分を計算します。
積分する関数は、12x39x2+6x412x^3 - 9x^2 + 6x - 4 です。

2. 解き方の手順

多項式の積分は、各項を個別に積分することで求められます。
積分公式 xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C を用います。ここで、CC は積分定数です。
(12x39x2+6x4)dx=12x3dx9x2dx+6xdx4dx\int (12x^3 - 9x^2 + 6x - 4) dx = \int 12x^3 dx - \int 9x^2 dx + \int 6x dx - \int 4 dx
各項を積分します。
12x3dx=12x3dx=12x44=3x4\int 12x^3 dx = 12 \int x^3 dx = 12 \cdot \frac{x^4}{4} = 3x^4
9x2dx=9x2dx=9x33=3x3\int 9x^2 dx = 9 \int x^2 dx = 9 \cdot \frac{x^3}{3} = 3x^3
6xdx=6xdx=6x22=3x2\int 6x dx = 6 \int x dx = 6 \cdot \frac{x^2}{2} = 3x^2
4dx=4x\int 4 dx = 4x
したがって、
(12x39x2+6x4)dx=3x43x3+3x24x+C\int (12x^3 - 9x^2 + 6x - 4) dx = 3x^4 - 3x^3 + 3x^2 - 4x + C

3. 最終的な答え

3x43x3+3x24x+C3x^4 - 3x^3 + 3x^2 - 4x + C

「解析学」の関連問題

方程式 $\sin x - x \cos x = 0$ が、開区間 $(\pi, \frac{3}{2}\pi)$ に少なくとも1つの解をもつことを示す。

三角関数中間値の定理方程式の解
2025/7/2

関数 $f(x_1, x_2, x_3) = e^{x_1} \sin x_2 \cos x_3$ に対して、点 $c = (\frac{\pi}{3}, \frac{\pi}{4}, 0)$ におけ...

多変数関数テイラー展開偏微分
2025/7/2

問題3は、以下の2つの極限値を求める問題です。 (1) $\lim_{x\to 0} \frac{\sinh x}{x}$ (2) $\lim_{x\to 0} \frac{\tanh x}{x}$ ...

極限sinhtanhロピタルの定理逆三角関数
2025/7/2

次の極限値を求めます。 (1) $\lim_{x \to 0} \frac{\sinh x}{x}$ (2) $\lim_{x \to 0} \frac{\tanh x}{x}$

極限テイラー展開双曲線関数ロピタルの定理
2025/7/2

3次関数 $f(x) = 2x^3 - 3(a+2)x^2 + 12ax$ について、以下の問いに答える。ただし、$a<2$ とする。 (1) この関数の極値を求めよ。 (2) 極大値と極小値の差が6...

3次関数極値微分積分面積
2025/7/2

## 1. 問題の内容

極限関数の極限有理化ロピタルの定理
2025/7/2

与えられた4つの極限値を求める問題です。 (1) $\lim_{x \to 0} \frac{\sqrt{1+x^2} - \sqrt{1-x^2}}{x^2}$ (2) $\lim_{x \to \...

極限関数の極限三角関数対数関数
2025/7/2

関数 $f(x, y) = x^3 + 2xy + y^2 - x$ の停留点を求める。

多変数関数偏微分停留点連立方程式二次方程式
2025/7/2

次の関数のグラフを書き、周期を求めよ。 (1) $y = 2\cos\theta$ (2) $y = \frac{1}{2}\sin\theta$ (3) $y = \frac{1}{2}\tan\t...

三角関数グラフ周期cossintan
2025/7/2

(1) 関数 $y = xe^{-x^2}$ を微分する。 (2) 定積分 $\int_{-1}^{1} (3x+2)(x-2)dx$ を計算する。

微分定積分関数の微分積分計算
2025/7/2