色の異なる10個の玉を3つの袋A, B, Cにそれぞれ2個、2個、6個に分けて入れる方法は何通りあるかを求める問題です。

確率論・統計学組み合わせ場合の数順列
2025/6/9

1. 問題の内容

色の異なる10個の玉を3つの袋A, B, Cにそれぞれ2個、2個、6個に分けて入れる方法は何通りあるかを求める問題です。

2. 解き方の手順

まず、10個の玉から袋Aに入れる2個を選ぶ組み合わせを計算します。
これは 10C2_{10}C_2 で表されます。
10C2=10!2!(102)!=10!2!8!=10×92×1=45_{10}C_2 = \frac{10!}{2!(10-2)!} = \frac{10!}{2!8!} = \frac{10 \times 9}{2 \times 1} = 45
次に、残った8個の玉から袋Bに入れる2個を選ぶ組み合わせを計算します。
これは 8C2_8C_2 で表されます。
8C2=8!2!(82)!=8!2!6!=8×72×1=28_8C_2 = \frac{8!}{2!(8-2)!} = \frac{8!}{2!6!} = \frac{8 \times 7}{2 \times 1} = 28
最後に、残った6個の玉は全て袋Cに入れます。これは 6C6=1_6C_6 = 1 通りです。
したがって、袋A、B、Cに入れる組み合わせの総数は、それぞれの組み合わせの積で表されます。
45×28×1=126045 \times 28 \times 1 = 1260

3. 最終的な答え

1260通り

「確率論・統計学」の関連問題

当たりくじが4本、はずれくじが6本ある。この中からくじを1本引き、それを元に戻さずに、もう1本くじを引く。2本ともはずれくじである確率を求める。

確率条件付き確率くじ引き
2025/6/9

当たりくじが3本、はずれくじが6本ある。この中からくじを2本引くとき、2本ともはずれである確率を求めよ。ただし、1本目に引いたくじは元に戻さない。

確率条件付き確率くじ引き
2025/6/9

袋の中に白玉が3個、赤玉が6個入っている。この袋から玉を1つ取り出し、色を確認した後、取り出した玉を袋に戻さずに、さらに玉を1つ取り出す。このとき、2つとも赤玉である確率を求める。

確率条件付き確率事象
2025/6/9

袋の中に白玉が4個、赤玉が4個入っている。ここから1つ玉を取り出し、色を確認した後、その玉を元に戻さずに、もう1つ玉を取り出す。このとき、2つとも赤玉である確率を求めよ。

確率条件付き確率玉の取り出し
2025/6/9

3個の白玉と4個の赤玉が入った袋から、2つ続けて玉を取り出すとき、2つとも赤玉である確率を求めます。ただし、取り出した玉は元に戻しません。

確率条件付き確率組み合わせ
2025/6/9

1つのサイコロを2回投げます。1回目に4以下の目が出て、2回目に5以上の目が出る確率を求めなさい。

確率サイコロ事象の独立
2025/6/9

大小2つのサイコロを同時に投げるとき、大きいサイコロは6の約数の目が出て、小さいサイコロは3の倍数の目が出る確率を求めます。

確率サイコロ事象場合の数
2025/6/9

赤玉4個と白玉2個が入っている袋から1個の玉を取り出し、色を確認して袋に戻す操作を3回繰り返す。1回目が白玉、2回目と3回目が赤玉である確率を求める。

確率確率の計算独立事象
2025/6/9

12本のくじがあり、そのうち3本が当たりである。1本引いて当たりかはずれかを確認後、くじを元に戻す。この試行を2回繰り返すとき、1回目が当たりで2回目がはずれである確率を求める。

確率独立試行組み合わせ
2025/6/9

大小3個のサイコロを投げて、出た目の数をそれぞれ$a$, $b$, $c$とするとき、$a \le b \le c$となる場合の数を求めよ。

サイコロ組み合わせ重複組合せ確率
2025/6/9