12本のくじがあり、そのうち3本が当たりである。1本引いて当たりかはずれかを確認後、くじを元に戻す。この試行を2回繰り返すとき、1回目が当たりで2回目がはずれである確率を求める。

確率論・統計学確率独立試行組み合わせ
2025/6/9

1. 問題の内容

12本のくじがあり、そのうち3本が当たりである。1本引いて当たりかはずれかを確認後、くじを元に戻す。この試行を2回繰り返すとき、1回目が当たりで2回目がはずれである確率を求める。

2. 解き方の手順

- 1回目の試行で当たりを引く確率を求める。
- 2回目の試行ではずれを引く確率を求める。
- 1回目と2回目の試行は独立であるため、それぞれの確率を掛け合わせる。

1. 1回目に当たりを引く確率は、当たりくじの数/全体のくじの数で計算できる。

P(当たり) = \frac{3}{12} = \frac{1}{4}

2. 2回目にはずれを引く確率は、はずれくじの数/全体のくじの数で計算できる。はずれくじは12本 - 3本 = 9本なので、

P(はずれ) = \frac{9}{12} = \frac{3}{4}

3. 1回目が当たりで2回目がはずれである確率は、それぞれの確率の積で表される。

P(当たり, はずれ) = P(当たり) \times P(はずれ) = \frac{1}{4} \times \frac{3}{4} = \frac{3}{16}

3. 最終的な答え

316\frac{3}{16}

「確率論・統計学」の関連問題

A君とB君の2人がじゃんけんを6回するとき、A君が4回勝つ確率を求める。ただし引き分けは回数に含むとする。

確率二項係数組み合わせ
2025/6/9

A君とB君が5回じゃんけんをする時、A君が3回勝つ確率を求めます。ただし、引き分けも1回のじゃんけんとして数えます。

確率二項分布組み合わせ
2025/6/9

赤玉4個、白玉3個、青玉1個がある。この中から4個を取り出して作る組合せの総数と、順列の総数を求めよ。

組合せ順列場合の数重複組合せ
2025/6/9

赤玉2個と白玉4個が入っている袋から玉を1個取り出し、色を見てから袋に戻す操作を4回繰り返すとき、赤玉がちょうど1回出る確率を求める。

確率反復試行二項分布
2025/6/9

赤玉4個と白玉2個が入っている袋から玉を1個取り出し、色を見てから袋に戻すという試行を4回繰り返すとき、赤玉が2回出る確率を求めます。

確率反復試行二項分布組み合わせ
2025/6/9

赤玉4個と白玉2個が入っている袋から、玉を1個取り出し、色を見てから袋に戻す。これを3回繰り返すとき、赤玉が2回出る確率を求める。

確率二項分布確率計算
2025/6/9

1枚の硬貨を6回続けて投げるとき、表がちょうど5回出る確率を求める問題です。

確率二項分布組み合わせ
2025/6/9

1枚の硬貨を6回続けて投げるとき、表がちょうど2回出る確率を求めます。

確率反復試行二項分布組み合わせ
2025/6/9

1つのサイコロを4回続けて投げるとき、5の目がちょうど3回出る確率を求める問題です。

確率反復試行二項分布サイコロ
2025/6/9

1つのサイコロを3回振るとき、1の目がちょうど2回出る確率を求めます。

確率二項分布サイコロ
2025/6/9