まず、11人の中から3人のグループを作る組み合わせを計算します。これは 11C3 で表されます。 11C3=3!(11−3)!11!=3!8!11!=3×2×111×10×9=11×5×3=165 次に、残りの8人の中から4人のグループを作る組み合わせを計算します。これは 8C4 で表されます。 8C4=4!(8−4)!8!=4!4!8!=4×3×2×18×7×6×5=2×7×5=70 最後に、残りの4人は自動的に最後のグループになるので、組み合わせは1通りです。
したがって、3つのグループを作る組み合わせは 165×70×1=11550 通りです。 しかし、4人のグループが2つあるため、グループ分けの順序は区別しません。よって、組み合わせを2!で割る必要があります。
2!11550=211550=5775