与えられた不等式 $0 < 1 - 3x < 4$ を解き、$x$ の範囲を求めます。

代数学不等式一次不等式不等式の解法
2025/6/9

1. 問題の内容

与えられた不等式 0<13x<40 < 1 - 3x < 4 を解き、xx の範囲を求めます。

2. 解き方の手順

複合不等式 0<13x<40 < 1 - 3x < 4 を2つの不等式に分けて考えます。
* 0<13x0 < 1 - 3x
* 13x<41 - 3x < 4
まず、0<13x0 < 1 - 3x を解きます。
3x<13x < 1
x<13x < \frac{1}{3}
次に、13x<41 - 3x < 4 を解きます。
3x<3-3x < 3
x>1x > -1
したがって、xx の範囲は 1<x<13-1 < x < \frac{1}{3} となります。

3. 最終的な答え

1<x<13-1 < x < \frac{1}{3}

「代数学」の関連問題

問題は以下の通りです。 (1) 複素数 $\alpha$ と $\beta$ が与えられたとき、$\alpha\beta$ と $\frac{\alpha}{\beta}$ を極形式で表す。 ...

複素数極形式複素数の演算
2025/6/9

$a = \frac{1}{3-2\sqrt{2}}$ とする。 (1) $a$ の分母を有理化し、簡単にせよ。 (2) $a$ の小数部分を $b$ とするとき、$b$ の値を求めよ。また、$a^2...

有理化平方根不等式整数小数部分
2025/6/9

問題は以下の通りです。 (1) $(x+2y) + (x-2)i = 0$ を満たす実数 $x, y$ を求めよ。 (2) $(x+3y) + (2x-y)i = 9+4i$ を満たす実数 $x, y...

複素数複素数の計算複素数の相等
2025/6/9

与えられた $a = \frac{1}{3-2\sqrt{2}}$ について、以下の問いに答えます。 (1) $a$ の分母を有理化し、簡単にします。 (2) $a$ の小数部分を $b$ とするとき...

分母の有理化平方根小数部分不等式整数
2025/6/9

二次方程式 $3x^2 - 5x - 1 = 0$ を解の公式を用いて解く問題です。

二次方程式解の公式根号
2025/6/9

次の2つの方程式を解きます。 (1) $x^2 - 2x - 4 = 0$ (2) $2x^2 - 8x - 1 = 0$

二次方程式解の公式平方根
2025/6/9

与えられた3つの2次方程式を解の公式を用いて解く問題です。 (1) $2x^2 + 7x + 1 = 0$ (2) $4x^2 - 9x + 3 = 0$ (3) $x^2 + x - 5 = 0$

二次方程式解の公式
2025/6/9

二次方程式 $x^2 + x - 4 = 0$ を解く問題です。

二次方程式解の公式平方根
2025/6/9

与えられた二次方程式 $x^2 + 5x - 2 = 0$ を平方完成を用いて解き、空欄を埋める問題です。

二次方程式平方完成解の公式
2025/6/9

次の2次方程式を解く問題です。 (1) $x^2 + 8x + 5 = 0$ (2) $x^2 - 6x + 1 = 0$

二次方程式解の公式
2025/6/9