与えられた積分を計算します。積分は次の通りです。 $\int \frac{1}{x\sqrt{2 + x - x^2}} dx$解析学積分変数変換三角関数積分計算2025/6/9## 回答1. 問題の内容与えられた積分を計算します。積分は次の通りです。∫1x2+x−x2dx\int \frac{1}{x\sqrt{2 + x - x^2}} dx∫x2+x−x21dx2. 解き方の手順まず、2+x−x22+x-x^22+x−x2 を平方完成します。2+x−x2=2−(x2−x)=2−(x2−x+14−14)=2+14−(x−12)2=94−(x−12)22+x-x^2 = 2 - (x^2 - x) = 2 - (x^2 - x + \frac{1}{4} - \frac{1}{4}) = 2 + \frac{1}{4} - (x - \frac{1}{2})^2 = \frac{9}{4} - (x - \frac{1}{2})^22+x−x2=2−(x2−x)=2−(x2−x+41−41)=2+41−(x−21)2=49−(x−21)2次に、積分を次のように書き換えます。∫1x94−(x−12)2dx\int \frac{1}{x\sqrt{\frac{9}{4} - (x-\frac{1}{2})^2}} dx∫x49−(x−21)21dxここで、変数変換 x=32sinθ+12x = \frac{3}{2}\sin\theta + \frac{1}{2}x=23sinθ+21 を行います。このとき、 dx=32cosθdθdx = \frac{3}{2}\cos\theta d\thetadx=23cosθdθ であり、94−(x−12)2=94−(32sinθ)2=94(1−sin2θ)=94cos2θ\frac{9}{4} - (x-\frac{1}{2})^2 = \frac{9}{4} - (\frac{3}{2}\sin\theta)^2 = \frac{9}{4}(1 - \sin^2\theta) = \frac{9}{4}\cos^2\theta49−(x−21)2=49−(23sinθ)2=49(1−sin2θ)=49cos2θ94−(x−12)2=32cosθ\sqrt{\frac{9}{4} - (x-\frac{1}{2})^2} = \frac{3}{2}\cos\theta49−(x−21)2=23cosθしたがって、積分は次のようになります。∫32cosθ(32sinθ+12)32cosθdθ=∫132sinθ+12dθ=∫23sinθ+1dθ\int \frac{\frac{3}{2}\cos\theta}{(\frac{3}{2}\sin\theta + \frac{1}{2})\frac{3}{2}\cos\theta} d\theta = \int \frac{1}{\frac{3}{2}\sin\theta + \frac{1}{2}} d\theta = \int \frac{2}{3\sin\theta + 1} d\theta∫(23sinθ+21)23cosθ23cosθdθ=∫23sinθ+211dθ=∫3sinθ+12dθここで、さらに変数変換 t=tan(θ2)t = \tan(\frac{\theta}{2})t=tan(2θ) を行います。sinθ=2t1+t2\sin\theta = \frac{2t}{1+t^2}sinθ=1+t22t, dθ=21+t2dtd\theta = \frac{2}{1+t^2} dtdθ=1+t22dtよって、∫23sinθ+1dθ=∫23(2t1+t2)+1⋅21+t2dt=∫46t+1+t2dt=∫4t2+6t+1dt\int \frac{2}{3\sin\theta + 1} d\theta = \int \frac{2}{3(\frac{2t}{1+t^2}) + 1} \cdot \frac{2}{1+t^2} dt = \int \frac{4}{6t + 1+t^2} dt = \int \frac{4}{t^2 + 6t + 1} dt∫3sinθ+12dθ=∫3(1+t22t)+12⋅1+t22dt=∫6t+1+t24dt=∫t2+6t+14dtt2+6t+1=(t+3)2−8t^2 + 6t + 1 = (t+3)^2 - 8t2+6t+1=(t+3)2−8 なので、∫4(t+3)2−8dt=4∫1(t+3)2−(22)2dt=4⋅12(22)ln∣t+3−22t+3+22∣+C=12ln∣t+3−22t+3+22∣+C\int \frac{4}{(t+3)^2 - 8} dt = 4 \int \frac{1}{(t+3)^2 - (2\sqrt{2})^2} dt = 4 \cdot \frac{1}{2(2\sqrt{2})} \ln|\frac{t+3-2\sqrt{2}}{t+3+2\sqrt{2}}| + C = \frac{1}{\sqrt{2}}\ln|\frac{t+3-2\sqrt{2}}{t+3+2\sqrt{2}}| + C∫(t+3)2−84dt=4∫(t+3)2−(22)21dt=4⋅2(22)1ln∣t+3+22t+3−22∣+C=21ln∣t+3+22t+3−22∣+Ct=tan(θ2)t = \tan(\frac{\theta}{2})t=tan(2θ) なので、12ln∣tan(θ2)+3−22tan(θ2)+3+22∣+C\frac{1}{\sqrt{2}}\ln|\frac{\tan(\frac{\theta}{2})+3-2\sqrt{2}}{\tan(\frac{\theta}{2})+3+2\sqrt{2}}| + C21ln∣tan(2θ)+3+22tan(2θ)+3−22∣+Csinθ=2x−13\sin\theta = \frac{2x-1}{3}sinθ=32x−1 なので、θ=arcsin(2x−13)\theta = \arcsin(\frac{2x-1}{3})θ=arcsin(32x−1)12ln∣tan(12arcsin(2x−13))+3−22tan(12arcsin(2x−13))+3+22∣+C\frac{1}{\sqrt{2}}\ln|\frac{\tan(\frac{1}{2}\arcsin(\frac{2x-1}{3}))+3-2\sqrt{2}}{\tan(\frac{1}{2}\arcsin(\frac{2x-1}{3}))+3+2\sqrt{2}}| + C21ln∣tan(21arcsin(32x−1))+3+22tan(21arcsin(32x−1))+3−22∣+C3. 最終的な答え12ln∣tan(12arcsin(2x−13))+3−22tan(12arcsin(2x−13))+3+22∣+C\frac{1}{\sqrt{2}}\ln|\frac{\tan(\frac{1}{2}\arcsin(\frac{2x-1}{3}))+3-2\sqrt{2}}{\tan(\frac{1}{2}\arcsin(\frac{2x-1}{3}))+3+2\sqrt{2}}| + C21ln∣tan(21arcsin(32x−1))+3+22tan(21arcsin(32x−1))+3−22∣+C