$n$ を正の奇数とするとき、二項定理を用いて次の等式を導け。 ${}_{n}C_0 + {}_{n}C_2 + \dots + {}_{n}C_{n-1} = {}_{n}C_1 + {}_{n}C_3 + \dots + {}_{n}C_n$代数学二項定理組み合わせ2025/6/101. 問題の内容nnn を正の奇数とするとき、二項定理を用いて次の等式を導け。nC0+nC2+⋯+nCn−1=nC1+nC3+⋯+nCn{}_{n}C_0 + {}_{n}C_2 + \dots + {}_{n}C_{n-1} = {}_{n}C_1 + {}_{n}C_3 + \dots + {}_{n}C_nnC0+nC2+⋯+nCn−1=nC1+nC3+⋯+nCn2. 解き方の手順二項定理より、(1+x)n=∑k=0nnCkxk=nC0+nC1x+nC2x2+⋯+nCnxn(1+x)^n = \sum_{k=0}^{n} {}_{n}C_k x^k = {}_{n}C_0 + {}_{n}C_1 x + {}_{n}C_2 x^2 + \dots + {}_{n}C_n x^n(1+x)n=∑k=0nnCkxk=nC0+nC1x+nC2x2+⋯+nCnxnx=1x=1x=1 を代入すると、(1+1)n=∑k=0nnCk=nC0+nC1+nC2+⋯+nCn(1+1)^n = \sum_{k=0}^{n} {}_{n}C_k = {}_{n}C_0 + {}_{n}C_1 + {}_{n}C_2 + \dots + {}_{n}C_n(1+1)n=∑k=0nnCk=nC0+nC1+nC2+⋯+nCn2n=nC0+nC1+nC2+⋯+nCn2^n = {}_{n}C_0 + {}_{n}C_1 + {}_{n}C_2 + \dots + {}_{n}C_n2n=nC0+nC1+nC2+⋯+nCnx=−1x=-1x=−1 を代入すると、(1−1)n=∑k=0nnCk(−1)k=nC0−nC1+nC2−nC3+⋯+nCn(1-1)^n = \sum_{k=0}^{n} {}_{n}C_k (-1)^k = {}_{n}C_0 - {}_{n}C_1 + {}_{n}C_2 - {}_{n}C_3 + \dots + {}_{n}C_n(1−1)n=∑k=0nnCk(−1)k=nC0−nC1+nC2−nC3+⋯+nCn0=nC0−nC1+nC2−nC3+⋯+nCn0 = {}_{n}C_0 - {}_{n}C_1 + {}_{n}C_2 - {}_{n}C_3 + \dots + {}_{n}C_n0=nC0−nC1+nC2−nC3+⋯+nCn2n=nC0+nC1+nC2+nC3+⋯+nCn2^n = {}_{n}C_0 + {}_{n}C_1 + {}_{n}C_2 + {}_{n}C_3 + \dots + {}_{n}C_n2n=nC0+nC1+nC2+nC3+⋯+nCn0=nC0−nC1+nC2−nC3+⋯+nCn0 = {}_{n}C_0 - {}_{n}C_1 + {}_{n}C_2 - {}_{n}C_3 + \dots + {}_{n}C_n0=nC0−nC1+nC2−nC3+⋯+nCnこれらを足し合わせると、2n=2(nC0+nC2+nC4+⋯+nCn−1)2^n = 2({}_{n}C_0 + {}_{n}C_2 + {}_{n}C_4 + \dots + {}_{n}C_{n-1})2n=2(nC0+nC2+nC4+⋯+nCn−1)2n−1=nC0+nC2+nC4+⋯+nCn−12^{n-1} = {}_{n}C_0 + {}_{n}C_2 + {}_{n}C_4 + \dots + {}_{n}C_{n-1}2n−1=nC0+nC2+nC4+⋯+nCn−1同様に、引き算をすると、2n=nC0+nC1+nC2+nC3+⋯+nCn2^n = {}_{n}C_0 + {}_{n}C_1 + {}_{n}C_2 + {}_{n}C_3 + \dots + {}_{n}C_n2n=nC0+nC1+nC2+nC3+⋯+nCn0=nC0−nC1+nC2−nC3+⋯+nCn0 = {}_{n}C_0 - {}_{n}C_1 + {}_{n}C_2 - {}_{n}C_3 + \dots + {}_{n}C_n0=nC0−nC1+nC2−nC3+⋯+nCn2n=2(nC1+nC3+⋯+nCn)2^n = 2({}_{n}C_1 + {}_{n}C_3 + \dots + {}_{n}C_n)2n=2(nC1+nC3+⋯+nCn)2n−1=nC1+nC3+⋯+nCn2^{n-1} = {}_{n}C_1 + {}_{n}C_3 + \dots + {}_{n}C_n2n−1=nC1+nC3+⋯+nCnよって、nC0+nC2+⋯+nCn−1=nC1+nC3+⋯+nCn=2n−1{}_{n}C_0 + {}_{n}C_2 + \dots + {}_{n}C_{n-1} = {}_{n}C_1 + {}_{n}C_3 + \dots + {}_{n}C_n = 2^{n-1}nC0+nC2+⋯+nCn−1=nC1+nC3+⋯+nCn=2n−13. 最終的な答えnC0+nC2+⋯+nCn−1=nC1+nC3+⋯+nCn{}_{n}C_0 + {}_{n}C_2 + \dots + {}_{n}C_{n-1} = {}_{n}C_1 + {}_{n}C_3 + \dots + {}_{n}C_nnC0+nC2+⋯+nCn−1=nC1+nC3+⋯+nCn