与えられた6つの式をそれぞれ計算し、簡略化された形で答えを求める問題です。代数学式の計算平方根有理化展開2025/6/101. 問題の内容与えられた6つの式をそれぞれ計算し、簡略化された形で答えを求める問題です。2. 解き方の手順各問題ごとに手順を説明します。(1) (7−5)(7−6)(\sqrt{7}-5)(\sqrt{7}-6)(7−5)(7−6)分配法則を使って展開します。(7−5)(7−6)=77−67−57+30=7−117+30(\sqrt{7}-5)(\sqrt{7}-6) = \sqrt{7}\sqrt{7} -6\sqrt{7} -5\sqrt{7} + 30 = 7 - 11\sqrt{7} + 30(7−5)(7−6)=77−67−57+30=7−117+307−117+30=37−1177 - 11\sqrt{7} + 30 = 37 - 11\sqrt{7}7−117+30=37−117(2) (7−2)(7+2)−(2−1)2(\sqrt{7}-2)(\sqrt{7}+2)-(\sqrt{2}-1)^2(7−2)(7+2)−(2−1)2(7−2)(7+2)(\sqrt{7}-2)(\sqrt{7}+2)(7−2)(7+2) は和と差の積なので (7)2−22=7−4=3(\sqrt{7})^2 - 2^2 = 7 - 4 = 3(7)2−22=7−4=3 となります。(2−1)2=(2)2−22+1=2−22+1=3−22(\sqrt{2}-1)^2 = (\sqrt{2})^2 - 2\sqrt{2} + 1 = 2 - 2\sqrt{2} + 1 = 3 - 2\sqrt{2}(2−1)2=(2)2−22+1=2−22+1=3−22したがって、3−(3−22)=3−3+22=223 - (3 - 2\sqrt{2}) = 3 - 3 + 2\sqrt{2} = 2\sqrt{2}3−(3−22)=3−3+22=22(3) 126−(3+2)2\frac{12}{\sqrt{6}} - (\sqrt{3} + \sqrt{2})^2612−(3+2)2126\frac{12}{\sqrt{6}}612 を有理化すると、126=1266=26\frac{12}{\sqrt{6}} = \frac{12\sqrt{6}}{6} = 2\sqrt{6}612=6126=26(3+2)2=(3)2+232+(2)2=3+26+2=5+26(\sqrt{3} + \sqrt{2})^2 = (\sqrt{3})^2 + 2\sqrt{3}\sqrt{2} + (\sqrt{2})^2 = 3 + 2\sqrt{6} + 2 = 5 + 2\sqrt{6}(3+2)2=(3)2+232+(2)2=3+26+2=5+26したがって、26−(5+26)=26−5−26=−52\sqrt{6} - (5 + 2\sqrt{6}) = 2\sqrt{6} - 5 - 2\sqrt{6} = -526−(5+26)=26−5−26=−5(4) (26+3)(54−12)−102(2\sqrt{6} + \sqrt{3})(\sqrt{54} - \sqrt{12}) - \frac{10}{\sqrt{2}}(26+3)(54−12)−21054=9×6=36\sqrt{54} = \sqrt{9 \times 6} = 3\sqrt{6}54=9×6=3612=4×3=23\sqrt{12} = \sqrt{4 \times 3} = 2\sqrt{3}12=4×3=23102=1022=52\frac{10}{\sqrt{2}} = \frac{10\sqrt{2}}{2} = 5\sqrt{2}210=2102=52(26+3)(36−23)=6(6)−418+318−2(3)=36−18−6=30−9×2=30−32(2\sqrt{6} + \sqrt{3})(3\sqrt{6} - 2\sqrt{3}) = 6(6) - 4\sqrt{18} + 3\sqrt{18} - 2(3) = 36 - \sqrt{18} - 6 = 30 - \sqrt{9 \times 2} = 30 - 3\sqrt{2}(26+3)(36−23)=6(6)−418+318−2(3)=36−18−6=30−9×2=30−32したがって、30−32−52=30−8230 - 3\sqrt{2} - 5\sqrt{2} = 30 - 8\sqrt{2}30−32−52=30−82(5) (10−6−2)(10+2+6)(\sqrt{10} - \sqrt{6} - 2)(\sqrt{10} + 2 + \sqrt{6})(10−6−2)(10+2+6)(10−(6+2))(10+(6+2))=(10)2−(6+2)2=10−(6+46+4)=10−(10+46)=10−10−46=−46(\sqrt{10} - (\sqrt{6} + 2))(\sqrt{10} + (\sqrt{6} + 2)) = (\sqrt{10})^2 - (\sqrt{6} + 2)^2 = 10 - (6 + 4\sqrt{6} + 4) = 10 - (10 + 4\sqrt{6}) = 10 - 10 - 4\sqrt{6} = -4\sqrt{6}(10−(6+2))(10+(6+2))=(10)2−(6+2)2=10−(6+46+4)=10−(10+46)=10−10−46=−46(6) (2+4+8+16)2(\sqrt{2} + \sqrt{4} + \sqrt{8} + \sqrt{16})^2(2+4+8+16)24=2\sqrt{4} = 24=28=22\sqrt{8} = 2\sqrt{2}8=2216=4\sqrt{16} = 416=4(2+2+22+4)2=(32+6)2=(32)2+2(32)(6)+62=18+362+36=54+362(\sqrt{2} + 2 + 2\sqrt{2} + 4)^2 = (3\sqrt{2} + 6)^2 = (3\sqrt{2})^2 + 2(3\sqrt{2})(6) + 6^2 = 18 + 36\sqrt{2} + 36 = 54 + 36\sqrt{2}(2+2+22+4)2=(32+6)2=(32)2+2(32)(6)+62=18+362+36=54+3623. 最終的な答え(1) 37−11737 - 11\sqrt{7}37−117(2) 222\sqrt{2}22(3) −5-5−5(4) 30−8230 - 8\sqrt{2}30−82(5) −46-4\sqrt{6}−46(6) 54+36254 + 36\sqrt{2}54+362