2点A(63, 0)とB(15, 20)間の距離を求めます。

幾何学距離座標平面三平方の定理
2025/6/10

1. 問題の内容

2点A(63, 0)とB(15, 20)間の距離を求めます。

2. 解き方の手順

2点間の距離の公式を使用します。
2点 (x1,y1)(x_1, y_1)(x2,y2)(x_2, y_2) の間の距離は、
d=(x2x1)2+(y2y1)2d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
で与えられます。
A(63, 0)とB(15, 20)の場合、
x1=63x_1 = 63, y1=0y_1 = 0, x2=15x_2 = 15, y2=20y_2 = 20 です。
したがって、
d=(1563)2+(200)2d = \sqrt{(15 - 63)^2 + (20 - 0)^2}
d=(48)2+(20)2d = \sqrt{(-48)^2 + (20)^2}
d=2304+400d = \sqrt{2304 + 400}
d=2704d = \sqrt{2704}
d=52d = 52

3. 最終的な答え

52

「幾何学」の関連問題

三角形OABにおいて、辺ABを2:3に内分する点をL、辺OAの中点をMとする。線分OLと線分BMの交点をPとするとき、線分BPと線分PMの比(BP:PM)を求める。

ベクトル内分点線形結合ベクトルの演算
2025/6/12

$\triangle OAB$ において、辺 $AB$ を $2:3$ に内分する点を $L$、辺 $OA$ の中点を $M$ とし、線分 $OL$ と線分 $BM$ の交点を $P$ とするとき、$...

ベクトル内分点線分の交点図形
2025/6/12

四面体OABCにおいて、AB=5, BC=7, CA=8, OA=OB=OC=7である。 (1) ∠BACの大きさと、△ABCの外接円の半径Rを求める。

四面体三角比余弦定理正弦定理外接円空間図形
2025/6/12

三角形OABにおいて、辺ABを2:3に内分する点をL、辺OAの中点をMとする。線分OLと線分BMの交点をPとするとき、BP:PMの比を求める。

ベクトル内分三角形線分
2025/6/12

円に内接する四角形ABCDにおいて、$AB=CD=2$, $BC=3$, $\angle DAB = 120^\circ$である。 (1) 対角線BDと辺ADの長さを求めよ。 (2) 四角形ABCDの...

四角形余弦定理面積三角比
2025/6/12

与えられた三角形ABCにおいて、以下の3つの問題について指定された辺の長さを求めます。 (1) $a=2, b=2\sqrt{3}, C=30^\circ$のとき、$c$を求める。 (2) $a=\s...

三角形余弦定理辺の長さ
2025/6/12

正八角形について、以下の問いに答える。 (1) 3つの頂点を結んでできる三角形の個数を求める。 (2) 8つの頂点から2つの頂点を選んでできる直線の本数を求める。 (3) (2)で求めた直線のうち、正...

正多角形組み合わせ三角形対角線
2025/6/12

四面体ABCDにおいて、辺の長さや内分点、角度などの条件が与えられたとき、ベクトル AE, AP, AQ, AR をベクトル b, c, d を用いて表し、ARの長さを求める問題です。

ベクトル空間ベクトル四面体内分点交点
2025/6/12

半径1の円の直交する2つの半径OA, OBがある。PQはBOに平行で、四角形PQQ'P'は正方形である。Pが弧AB上を動くとき、斜線部分の面積Sが最大となるときの線分PQの長さを求める。

正方形面積最大値三角関数
2025/6/12

三角形ABCにおいて、$a = 2\sqrt{3}$、$B = 45^\circ$、$C = 15^\circ$であるとする。 (1) $A, b, c$を求めよ。 (2) $\sin 15^\cir...

三角比正弦定理三角形角度辺の長さ三角関数の加法定理
2025/6/12