次の和 $S$ を求めます。 $S = 2n \cdot 1 + (2n-2) \cdot 3 + (2n-4) \cdot 3^2 + \cdots + 4 \cdot 3^{n-2} + 2 \cdot 3^{n-1}$代数学級数シグマ等比数列2025/6/101. 問題の内容次の和 SSS を求めます。S=2n⋅1+(2n−2)⋅3+(2n−4)⋅32+⋯+4⋅3n−2+2⋅3n−1S = 2n \cdot 1 + (2n-2) \cdot 3 + (2n-4) \cdot 3^2 + \cdots + 4 \cdot 3^{n-2} + 2 \cdot 3^{n-1}S=2n⋅1+(2n−2)⋅3+(2n−4)⋅32+⋯+4⋅3n−2+2⋅3n−12. 解き方の手順与えられた和 SSS は、次のように表されます。S=∑k=0n−1(2n−2k)⋅3k=∑k=0n−12(n−k)⋅3k=2∑k=0n−1(n−k)⋅3kS = \sum_{k=0}^{n-1} (2n - 2k) \cdot 3^k = \sum_{k=0}^{n-1} 2(n-k) \cdot 3^k = 2 \sum_{k=0}^{n-1} (n-k) \cdot 3^kS=∑k=0n−1(2n−2k)⋅3k=∑k=0n−12(n−k)⋅3k=2∑k=0n−1(n−k)⋅3kここで、S=2∑k=0n−1(n−k)⋅3kS = 2 \sum_{k=0}^{n-1} (n-k) \cdot 3^kS=2∑k=0n−1(n−k)⋅3k を計算します。S=2[n⋅1+(n−1)⋅3+(n−2)⋅32+⋯+2⋅3n−2+1⋅3n−1]S = 2[n \cdot 1 + (n-1) \cdot 3 + (n-2) \cdot 3^2 + \dots + 2 \cdot 3^{n-2} + 1 \cdot 3^{n-1}]S=2[n⋅1+(n−1)⋅3+(n−2)⋅32+⋯+2⋅3n−2+1⋅3n−1]3S=2[n⋅3+(n−1)⋅32+(n−2)⋅33+⋯+2⋅3n−1+1⋅3n]3S = 2[n \cdot 3 + (n-1) \cdot 3^2 + (n-2) \cdot 3^3 + \dots + 2 \cdot 3^{n-1} + 1 \cdot 3^{n}]3S=2[n⋅3+(n−1)⋅32+(n−2)⋅33+⋯+2⋅3n−1+1⋅3n]S−3S=2[n+(n−1)⋅3−n⋅3+(n−2)⋅32−(n−1)⋅32+⋯+2⋅3n−2−3⋅3n−2+1⋅3n−1−2⋅3n−1−3n]S - 3S = 2[n + (n-1) \cdot 3 - n \cdot 3 + (n-2) \cdot 3^2 - (n-1) \cdot 3^2 + \dots + 2 \cdot 3^{n-2} - 3 \cdot 3^{n-2} + 1 \cdot 3^{n-1} - 2 \cdot 3^{n-1} - 3^n]S−3S=2[n+(n−1)⋅3−n⋅3+(n−2)⋅32−(n−1)⋅32+⋯+2⋅3n−2−3⋅3n−2+1⋅3n−1−2⋅3n−1−3n]−2S=2[n−3−32−33−⋯−3n−1−3n]-2S = 2[n - 3 - 3^2 - 3^3 - \dots - 3^{n-1} - 3^n]−2S=2[n−3−32−33−⋯−3n−1−3n]−2S=2[n−∑k=1n3k]=2[n−3(3n−1)3−1]=2[n−3(3n−1)2]-2S = 2[n - \sum_{k=1}^{n} 3^k ] = 2[n - \frac{3(3^n - 1)}{3-1}] = 2[n - \frac{3(3^n - 1)}{2}]−2S=2[n−∑k=1n3k]=2[n−3−13(3n−1)]=2[n−23(3n−1)]−S=n−3(3n−1)2-S = n - \frac{3(3^n - 1)}{2}−S=n−23(3n−1)S=3(3n−1)2−n=3n+1−32−n=3n+1−3−2n2S = \frac{3(3^n - 1)}{2} - n = \frac{3^{n+1} - 3}{2} - n = \frac{3^{n+1} - 3 - 2n}{2}S=23(3n−1)−n=23n+1−3−n=23n+1−3−2n3. 最終的な答えS=3n+1−2n−32S = \frac{3^{n+1} - 2n - 3}{2}S=23n+1−2n−3