問題5:円順列に関する穴埋め問題。 問題6:円順列の総数を求める問題。 問題7:組み合わせの計算問題。

離散数学順列組み合わせ円順列nCr
2025/6/10

1. 問題の内容

問題5:円順列に関する穴埋め問題。
問題6:円順列の総数を求める問題。
問題7:組み合わせの計算問題。

2. 解き方の手順

問題5:
(1) nn個の異なるものを円形に並べたものを、nn個のものの「円順列」という。
(2) nn個のものの円順列の総数は、(n1)!(n-1)!である。
問題6:
(1) 7人が円形のテーブルに向かって座る方法は、円順列なので、(71)!=6!(7-1)! = 6! で計算できる。
6!=6×5×4×3×2×1=7206! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720
(2) 男2人を1つの塊として考える。すると、男2人+女4人の合計5つのものを円形に並べることになるので、(51)!=4!(5-1)! = 4!通りの並べ方がある。
男2人の並び方は2通りある。
したがって、並べ方は 4!×2=24×2=484! \times 2 = 24 \times 2 = 48通り。
問題7:
(1) 5C2=5!2!(52)!=5!2!3!=5×42×1=10{}_5C_2 = \frac{5!}{2!(5-2)!} = \frac{5!}{2!3!} = \frac{5 \times 4}{2 \times 1} = 10
(2) 7C3=7!3!(73)!=7!3!4!=7×6×53×2×1=35{}_7C_3 = \frac{7!}{3!(7-3)!} = \frac{7!}{3!4!} = \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 35
(3) 7C4=7!4!(74)!=7!4!3!=7×6×53×2×1=35{}_7C_4 = \frac{7!}{4!(7-4)!} = \frac{7!}{4!3!} = \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 35
(4) 7C5=7!5!(75)!=7!5!2!=7×62×1=21{}_7C_5 = \frac{7!}{5!(7-5)!} = \frac{7!}{5!2!} = \frac{7 \times 6}{2 \times 1} = 21

3. 最終的な答え

問題5:
(1) 円順列
(2) (n1)!(n-1)!
問題6:
(1) 720通り
(2) 48通り
問題7:
(1) 10
(2) 35
(3) 35
(4) 21

「離散数学」の関連問題

全体集合 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ と、部分集合 $A = \{1, 3, 6, 8\}$、 $B = \{2, 6, 8, 9\}$ が与えられ...

集合補集合和集合
2025/6/12

女子5人、男子3人が1列に並ぶときの並び方の総数を求める問題です。以下の4つの場合について考えます。 (1) 女子5人が続いて並ぶ。 (2) 女子5人、男子3人がそれぞれ続いて並ぶ。 (3) 両端が男...

順列組み合わせ場合の数並び方
2025/6/12

(1) 20人の中から議長、副議長、書記を1人ずつ選ぶ方法は何通りあるかを求める問題です。ただし、兼任は認められません。 (2) 番号のついた8個の椅子に6人の人を座らせる方法は何通りあるかを求める問...

順列組み合わせ場合の数確率
2025/6/12

## 問題の解答

組み合わせ順列場合の数整数
2025/6/12

以下の4つの問題を解きます。 (1) 1から7までの7個の数字から異なる5個を選んで作る5桁の整数の総数を求める。 (2) "triangle"という単語の8個の文字全部を使ってできる文字列の総数を求...

順列組み合わせ場合の数数え上げ
2025/6/12

順列と階乗の計算、整数の作成、文字の並べ替え、役職の選出、座席の配置に関する問題を解きます。

順列階乗組み合わせ場合の数
2025/6/12

問題は、集合 $A, B, C, D$ が与えられたとき、条件 $x \in B \cap D$ が $x \in \overline{A}$ であるための何であるか、および条件 $x \in (A ...

集合論理必要条件十分条件補集合
2025/6/12

集合 $\{a, b, c\}$ の冪集合を求める問題です。選択肢の中から正しいものを選びます。

集合論冪集合部分集合
2025/6/12

集合 $\{1, 2\}$ の冪集合を求める問題です。選択肢の中から正しい冪集合を選びます。

集合論冪集合部分集合
2025/6/12

与えられた集合 $\\{∅, ∅, \\{∅\\}, \\{\\{∅\\}\\}\\}$ の濃度を求める問題です。集合の濃度とは、その集合に含まれる異なる要素の数を指します。

集合論濃度集合
2025/6/12