与えられた積分 $\int \frac{2x-3}{x^3+x^2-2} dx$ を計算します。解析学積分部分分数分解積分計算2025/6/111. 問題の内容与えられた積分 ∫2x−3x3+x2−2dx\int \frac{2x-3}{x^3+x^2-2} dx∫x3+x2−22x−3dx を計算します。2. 解き方の手順まず、分母を因数分解します。x3+x2−2x^3 + x^2 - 2x3+x2−2 を因数分解すると、x=1x=1x=1 が解であることがわかるので、(x−1)(x-1)(x−1) で割ることができます。x3+x2−2=(x−1)(x2+2x+2)x^3 + x^2 - 2 = (x-1)(x^2 + 2x + 2)x3+x2−2=(x−1)(x2+2x+2)したがって、積分は∫2x−3(x−1)(x2+2x+2)dx\int \frac{2x-3}{(x-1)(x^2+2x+2)} dx∫(x−1)(x2+2x+2)2x−3dx部分分数分解を行います。2x−3(x−1)(x2+2x+2)=Ax−1+Bx+Cx2+2x+2\frac{2x-3}{(x-1)(x^2+2x+2)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+2x+2}(x−1)(x2+2x+2)2x−3=x−1A+x2+2x+2Bx+C両辺に (x−1)(x2+2x+2)(x-1)(x^2+2x+2)(x−1)(x2+2x+2) をかけると、2x−3=A(x2+2x+2)+(Bx+C)(x−1)2x-3 = A(x^2+2x+2) + (Bx+C)(x-1)2x−3=A(x2+2x+2)+(Bx+C)(x−1)2x−3=Ax2+2Ax+2A+Bx2−Bx+Cx−C2x-3 = Ax^2 + 2Ax + 2A + Bx^2 - Bx + Cx - C2x−3=Ax2+2Ax+2A+Bx2−Bx+Cx−C2x−3=(A+B)x2+(2A−B+C)x+(2A−C)2x-3 = (A+B)x^2 + (2A-B+C)x + (2A-C)2x−3=(A+B)x2+(2A−B+C)x+(2A−C)係数を比較すると、A+B=0A+B = 0A+B=02A−B+C=22A-B+C = 22A−B+C=22A−C=−32A-C = -32A−C=−3A+B=0A+B=0A+B=0 より B=−AB = -AB=−A2A−B+C=2A−(−A)+C=3A+C=22A - B + C = 2A - (-A) + C = 3A + C = 22A−B+C=2A−(−A)+C=3A+C=22A−C=−32A-C = -32A−C=−3二つの式を足すと 5A=−15A = -15A=−1, よって A=−15A = -\frac{1}{5}A=−51.B=−A=15B = -A = \frac{1}{5}B=−A=51.C=2A+3=−25+3=135C = 2A+3 = -\frac{2}{5}+3 = \frac{13}{5}C=2A+3=−52+3=513.したがって、2x−3(x−1)(x2+2x+2)=−1/5x−1+(1/5)x+13/5x2+2x+2=−15(x−1)+x+135(x2+2x+2)\frac{2x-3}{(x-1)(x^2+2x+2)} = \frac{-1/5}{x-1} + \frac{(1/5)x + 13/5}{x^2+2x+2} = -\frac{1}{5(x-1)} + \frac{x+13}{5(x^2+2x+2)}(x−1)(x2+2x+2)2x−3=x−1−1/5+x2+2x+2(1/5)x+13/5=−5(x−1)1+5(x2+2x+2)x+13∫2x−3x3+x2−2dx=∫(−15(x−1)+x+135(x2+2x+2))dx\int \frac{2x-3}{x^3+x^2-2} dx = \int \left( -\frac{1}{5(x-1)} + \frac{x+13}{5(x^2+2x+2)} \right) dx∫x3+x2−22x−3dx=∫(−5(x−1)1+5(x2+2x+2)x+13)dx=−15∫1x−1dx+15∫x+13x2+2x+2dx= -\frac{1}{5} \int \frac{1}{x-1} dx + \frac{1}{5} \int \frac{x+13}{x^2+2x+2} dx=−51∫x−11dx+51∫x2+2x+2x+13dx=−15ln∣x−1∣+15∫x+13x2+2x+2dx= -\frac{1}{5} \ln |x-1| + \frac{1}{5} \int \frac{x+13}{x^2+2x+2} dx=−51ln∣x−1∣+51∫x2+2x+2x+13dx∫x+13x2+2x+2dx=∫x+1x2+2x+2dx+∫12x2+2x+2dx\int \frac{x+13}{x^2+2x+2} dx = \int \frac{x+1}{x^2+2x+2} dx + \int \frac{12}{x^2+2x+2} dx∫x2+2x+2x+13dx=∫x2+2x+2x+1dx+∫x2+2x+212dxx2+2x+2=(x+1)2+1x^2+2x+2 = (x+1)^2 + 1x2+2x+2=(x+1)2+1∫x+1(x+1)2+1dx=12ln∣(x+1)2+1∣=12ln∣x2+2x+2∣\int \frac{x+1}{(x+1)^2+1} dx = \frac{1}{2} \ln |(x+1)^2 + 1| = \frac{1}{2} \ln |x^2+2x+2|∫(x+1)2+1x+1dx=21ln∣(x+1)2+1∣=21ln∣x2+2x+2∣∫1(x+1)2+1dx=arctan(x+1)\int \frac{1}{(x+1)^2+1} dx = \arctan(x+1)∫(x+1)2+11dx=arctan(x+1)∫12x2+2x+2dx=12arctan(x+1)\int \frac{12}{x^2+2x+2} dx = 12 \arctan(x+1)∫x2+2x+212dx=12arctan(x+1)したがって、∫x+13x2+2x+2dx=12ln(x2+2x+2)+12arctan(x+1)\int \frac{x+13}{x^2+2x+2} dx = \frac{1}{2} \ln(x^2+2x+2) + 12 \arctan(x+1)∫x2+2x+2x+13dx=21ln(x2+2x+2)+12arctan(x+1)∫2x−3x3+x2−2dx=−15ln∣x−1∣+15(12ln(x2+2x+2)+12arctan(x+1))+C\int \frac{2x-3}{x^3+x^2-2} dx = -\frac{1}{5} \ln |x-1| + \frac{1}{5} \left( \frac{1}{2} \ln(x^2+2x+2) + 12 \arctan(x+1) \right) + C∫x3+x2−22x−3dx=−51ln∣x−1∣+51(21ln(x2+2x+2)+12arctan(x+1))+C=−15ln∣x−1∣+110ln(x2+2x+2)+125arctan(x+1)+C= -\frac{1}{5} \ln |x-1| + \frac{1}{10} \ln(x^2+2x+2) + \frac{12}{5} \arctan(x+1) + C=−51ln∣x−1∣+101ln(x2+2x+2)+512arctan(x+1)+C3. 最終的な答え−15ln∣x−1∣+110ln(x2+2x+2)+125arctan(x+1)+C-\frac{1}{5} \ln |x-1| + \frac{1}{10} \ln(x^2+2x+2) + \frac{12}{5} \arctan(x+1) + C−51ln∣x−1∣+101ln(x2+2x+2)+512arctan(x+1)+C