関数 $y = e^x \cos x$ の$n$次導関数を求めよ。解析学微分導関数三角関数指数関数数学的帰納法2025/6/111. 問題の内容関数 y=excosxy = e^x \cos xy=excosx のnnn次導関数を求めよ。2. 解き方の手順まず、yyyの導関数をいくつか計算して、規則性を見つけることを試みます。y′=excosx−exsinx=ex(cosx−sinx)y' = e^x \cos x - e^x \sin x = e^x(\cos x - \sin x)y′=excosx−exsinx=ex(cosx−sinx)y′′=ex(cosx−sinx)+ex(−sinx−cosx)=−2exsinxy'' = e^x(\cos x - \sin x) + e^x(-\sin x - \cos x) = -2e^x\sin xy′′=ex(cosx−sinx)+ex(−sinx−cosx)=−2exsinxy′′′=−2exsinx−2excosx=−2ex(sinx+cosx)y''' = -2e^x\sin x - 2e^x\cos x = -2e^x(\sin x + \cos x)y′′′=−2exsinx−2excosx=−2ex(sinx+cosx)y′′′′=−2ex(sinx+cosx)+(−2ex)(cosx−sinx)=−4excosxy'''' = -2e^x(\sin x + \cos x) + (-2e^x)(\cos x - \sin x) = -4e^x\cos xy′′′′=−2ex(sinx+cosx)+(−2ex)(cosx−sinx)=−4excosxこのままでは規則性を見つけるのが難しいので、三角関数の合成を利用します。y=excosx=ex12+12cos(x−arctan01)=2excos(x−0)y = e^x \cos x = e^x \sqrt{1^2+1^2} \cos (x - \arctan \frac{0}{1}) = \sqrt{2}e^x \cos(x - 0)y=excosx=ex12+12cos(x−arctan10)=2excos(x−0)y′=ex(cosx−sinx)=2excos(x+π4)y' = e^x(\cos x - \sin x) = \sqrt{2}e^x \cos(x + \frac{\pi}{4})y′=ex(cosx−sinx)=2excos(x+4π)y′′=−2exsinx=2ex(−sinx)=(2)2excos(x+2π4)y'' = -2e^x\sin x = 2e^x(-\sin x) = (\sqrt{2})^2e^x \cos(x + \frac{2\pi}{4})y′′=−2exsinx=2ex(−sinx)=(2)2excos(x+42π)y′′′=−2ex(sinx+cosx)=22excos(x+3π4)=(2)3excos(x+3π4)y''' = -2e^x(\sin x + \cos x) = 2\sqrt{2}e^x\cos(x + \frac{3\pi}{4}) = (\sqrt{2})^3e^x \cos(x + \frac{3\pi}{4})y′′′=−2ex(sinx+cosx)=22excos(x+43π)=(2)3excos(x+43π)y′′′′=−4excosx=4ex(−cosx)=(2)4excos(x+π)y'''' = -4e^x\cos x = 4e^x(-\cos x) = (\sqrt{2})^4e^x \cos(x + \pi)y′′′′=−4excosx=4ex(−cosx)=(2)4excos(x+π)y(5)=4ex(−cosx+sinx)=42excos(x+5π4)=(2)5excos(x+5π4)y^{(5)} = 4e^x(-\cos x + \sin x) = 4\sqrt{2}e^x \cos(x + \frac{5\pi}{4}) = (\sqrt{2})^5e^x\cos(x + \frac{5\pi}{4})y(5)=4ex(−cosx+sinx)=42excos(x+45π)=(2)5excos(x+45π)したがって、y(n)=(2)nexcos(x+nπ4)y^{(n)} = (\sqrt{2})^n e^x \cos(x + \frac{n\pi}{4})y(n)=(2)nexcos(x+4nπ) と推測できます。数学的帰納法で証明します。(1) n=1n=1n=1のとき、y′=2excos(x+π4)y' = \sqrt{2} e^x \cos(x + \frac{\pi}{4})y′=2excos(x+4π)となり、正しい。(2) n=kn=kn=kのとき、y(k)=(2)kexcos(x+kπ4)y^{(k)} = (\sqrt{2})^k e^x \cos(x + \frac{k\pi}{4})y(k)=(2)kexcos(x+4kπ)が成り立つと仮定する。(3) n=k+1n=k+1n=k+1のとき、y(k+1)=ddxy(k)=ddx(2)kexcos(x+kπ4)y^{(k+1)} = \frac{d}{dx}y^{(k)} = \frac{d}{dx} (\sqrt{2})^k e^x \cos(x + \frac{k\pi}{4})y(k+1)=dxdy(k)=dxd(2)kexcos(x+4kπ)=(2)kexcos(x+kπ4)+(2)kex(−sin(x+kπ4))= (\sqrt{2})^k e^x \cos(x + \frac{k\pi}{4}) + (\sqrt{2})^k e^x (-\sin(x + \frac{k\pi}{4}))=(2)kexcos(x+4kπ)+(2)kex(−sin(x+4kπ))=(2)kex[cos(x+kπ4)−sin(x+kπ4)]= (\sqrt{2})^k e^x [\cos(x + \frac{k\pi}{4}) - \sin(x + \frac{k\pi}{4})]=(2)kex[cos(x+4kπ)−sin(x+4kπ)]=(2)kex[2cos(x+kπ4+π4)]= (\sqrt{2})^k e^x [\sqrt{2} \cos(x + \frac{k\pi}{4} + \frac{\pi}{4})]=(2)kex[2cos(x+4kπ+4π)]=(2)k+1excos(x+(k+1)π4)= (\sqrt{2})^{k+1} e^x \cos(x + \frac{(k+1)\pi}{4})=(2)k+1excos(x+4(k+1)π)よって、n=k+1n=k+1n=k+1のときも成り立つ。したがって、数学的帰納法より、y(n)=(2)nexcos(x+nπ4)y^{(n)} = (\sqrt{2})^n e^x \cos(x + \frac{n\pi}{4})y(n)=(2)nexcos(x+4nπ)3. 最終的な答えy(n)=(2)nexcos(x+nπ4)y^{(n)} = (\sqrt{2})^n e^x \cos(x + \frac{n\pi}{4})y(n)=(2)nexcos(x+4nπ)