与えられた積分を計算します。 $\int \frac{x+1}{x(x^2+1)} dx$解析学積分部分分数分解不定積分arctan対数関数2025/6/111. 問題の内容与えられた積分を計算します。∫x+1x(x2+1)dx\int \frac{x+1}{x(x^2+1)} dx∫x(x2+1)x+1dx2. 解き方の手順部分分数分解を行います。x+1x(x2+1)=Ax+Bx+Cx2+1\frac{x+1}{x(x^2+1)} = \frac{A}{x} + \frac{Bx+C}{x^2+1}x(x2+1)x+1=xA+x2+1Bx+C両辺に x(x2+1)x(x^2+1)x(x2+1) をかけるとx+1=A(x2+1)+(Bx+C)x=A(x2+1)+Bx2+Cxx+1 = A(x^2+1) + (Bx+C)x = A(x^2+1) + Bx^2 + Cxx+1=A(x2+1)+(Bx+C)x=A(x2+1)+Bx2+Cxx+1=(A+B)x2+Cx+Ax+1 = (A+B)x^2 + Cx + Ax+1=(A+B)x2+Cx+A係数を比較するとA+B=0A+B=0A+B=0, C=1C=1C=1, A=1A=1A=1A=1A=1A=1 を A+B=0A+B=0A+B=0 に代入すると 1+B=01+B=01+B=0 より B=−1B=-1B=−1よって、x+1x(x2+1)=1x+−x+1x2+1=1x−xx2+1+1x2+1\frac{x+1}{x(x^2+1)} = \frac{1}{x} + \frac{-x+1}{x^2+1} = \frac{1}{x} - \frac{x}{x^2+1} + \frac{1}{x^2+1}x(x2+1)x+1=x1+x2+1−x+1=x1−x2+1x+x2+11積分を計算します。∫x+1x(x2+1)dx=∫(1x−xx2+1+1x2+1)dx\int \frac{x+1}{x(x^2+1)} dx = \int \left( \frac{1}{x} - \frac{x}{x^2+1} + \frac{1}{x^2+1} \right) dx∫x(x2+1)x+1dx=∫(x1−x2+1x+x2+11)dx=∫1xdx−∫xx2+1dx+∫1x2+1dx= \int \frac{1}{x} dx - \int \frac{x}{x^2+1} dx + \int \frac{1}{x^2+1} dx=∫x1dx−∫x2+1xdx+∫x2+11dx∫1xdx=ln∣x∣+C1\int \frac{1}{x} dx = \ln |x| + C_1∫x1dx=ln∣x∣+C1∫xx2+1dx\int \frac{x}{x^2+1} dx∫x2+1xdx について、u=x2+1u=x^2+1u=x2+1 とおくと、du=2xdxdu=2xdxdu=2xdx より xdx=12duxdx = \frac{1}{2}duxdx=21du∫xx2+1dx=∫1u12du=12∫1udu=12ln∣u∣+C2=12ln(x2+1)+C2\int \frac{x}{x^2+1} dx = \int \frac{1}{u} \frac{1}{2} du = \frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \ln |u| + C_2 = \frac{1}{2} \ln (x^2+1) + C_2∫x2+1xdx=∫u121du=21∫u1du=21ln∣u∣+C2=21ln(x2+1)+C2∫1x2+1dx=arctan(x)+C3\int \frac{1}{x^2+1} dx = \arctan(x) + C_3∫x2+11dx=arctan(x)+C3よって∫x+1x(x2+1)dx=ln∣x∣−12ln(x2+1)+arctan(x)+C\int \frac{x+1}{x(x^2+1)} dx = \ln |x| - \frac{1}{2} \ln (x^2+1) + \arctan(x) + C∫x(x2+1)x+1dx=ln∣x∣−21ln(x2+1)+arctan(x)+C=ln∣x∣−lnx2+1+arctan(x)+C= \ln |x| - \ln \sqrt{x^2+1} + \arctan(x) + C=ln∣x∣−lnx2+1+arctan(x)+C3. 最終的な答えln∣x∣−12ln(x2+1)+arctan(x)+C\ln |x| - \frac{1}{2} \ln (x^2+1) + \arctan(x) + Cln∣x∣−21ln(x2+1)+arctan(x)+Cまたはln∣x∣−lnx2+1+arctan(x)+C\ln |x| - \ln \sqrt{x^2+1} + \arctan(x) + Cln∣x∣−lnx2+1+arctan(x)+C