(1)
a2=a1+31=1+3=4 a3=a2+32=4+9=13 an=a1+∑k=1n−13k=1+3−13(3n−1−1)=1+23n−3=22+3n−3=23n−1 (2)
cn=2nbn とおくと、cn+1=2n+1bn+1=2n+12bn+2⋅6n=2nbn+2n+12⋅6n=cn+2n6n=cn+3n c1=21b1=22=1 cn=c1+∑k=1n−13k=1+3−13(3n−1−1)=1+23n−3=23n−1 bn=2ncn=2n⋅23n−1=2n−1(3n−1)=2n−13n−2n−1=3(23)n−12n−2n−1 bn=2ncn=2n(1+∑k=1n−13k)=2n(1+23(3n−1−1))=2n+2n⋅23(3n−1−1) =2n+3∑k=1n−12n−k3k=2n−1(3n−1)=2n−13n−2n−1 cn=23n−1=∑k=1n−13k+1 $b_n = 2^n (\sum_{k=1}^{n-1} 3^k+1)= 2^n +2^n \sum_{k=1}^{n-1} 3^k = \sum_{k=1}^{n-1} 2^n3^k + 2^n =3^{n-1} \sum_{k=1}^{n-1} 2^{n-k-1}
bn=2n−1(3n−1)=2n−1(3∑k=0n−13k−1)=2∑k=0n3k−1 bn=2n−1(3n−1) $b_n = 2^{n-1} (3^n-1) = \sum_{i=1}^{n-1} (3 \times 2)^{n-1}2 + 2 \implies \sum_{k=1}^{n-1} c d +2
空欄9: 2n−1, 空欄10: 3, 空欄11: −2n−1