与えられた式 $(8a+3b+2c)-(3a-c+5)$ を簡略化すること。

代数学式の簡略化多項式
2025/6/11

1. 問題の内容

与えられた式 (8a+3b+2c)(3ac+5)(8a+3b+2c)-(3a-c+5) を簡略化すること。

2. 解き方の手順

まず、括弧を外します。 2つ目の括弧の前にはマイナス記号があるので、括弧の中の各項の符号を反転させる必要があります。
8a+3b+2c3a+c58a+3b+2c-3a+c-5
次に、類似の項をまとめます。
aa の項: 8a3a=5a8a - 3a = 5a
bb の項: 3b3b
cc の項: 2c+c=3c2c + c = 3c
定数項: 5-5
したがって、簡略化された式は次のようになります。
5a+3b+3c55a+3b+3c-5

3. 最終的な答え

5a+3b+3c55a+3b+3c-5

「代数学」の関連問題

$\log_3 2 \cdot \log_2 27$ を計算する問題です。

対数底の変換公式計算
2025/6/13

2次方程式 $2x^2 + 4x + 3 = 0$ の2つの解を $\alpha, \beta$ とするとき、以下の式の値を求める問題です。 (1) $\alpha^2 + \beta^2$ (2) ...

二次方程式解と係数の関係式の計算
2025/6/13

与えられた上三角行列 $A$ の逆行列を求める問題です。 $A = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$

線形代数行列逆行列上三角行列
2025/6/13

与えられた上三角行列 $A = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$ の逆行列 $A^{-1}$ を求め...

線形代数行列逆行列基本変形
2025/6/13

2次方程式 $x^2 + 2(m-3)x + 4m = 0$ が与えられています。以下の3つの条件を満たすときの定数 $m$ の値の範囲をそれぞれ求めます。 (1) 異なる2つの正の解をもつ (2) ...

二次方程式解の公式判別式解と係数の関係不等式
2025/6/13

与えられた行列 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ の逆行列 $A^{-1}$ を求めよ。

行列逆行列線形代数行基本変形
2025/6/13

与えられた式 $(x - 2y)^2 - (x + 2y)(x - 2y)$ を簡略化しなさい。

式の簡略化因数分解展開多項式
2025/6/13

3次元ベクトル $\begin{pmatrix} -3j \\ j \\ 2j-1 \end{pmatrix}$ を第 $j$ 列ベクトルとする (3, 3) 行列 $A$ を書き、また、$A$ の第...

行列ベクトル線形代数
2025/6/13

与えられた式 $(x+y)(x-9y) - (x+3y)(x-3y)$ を展開し、整理して簡単にします。

式の展開因数分解代数計算多項式
2025/6/13

与えられた式 $x(x+3y) - (x+y)^2$ を展開して、整理し、簡単にしてください。

式の展開多項式整理
2025/6/13