$n$を自然数とする。$n^2$が偶数でないならば、$n$は偶数でないことを証明せよ。穴埋め形式の問題であり、エ、オ、カ、キ、クに当てはまる適切な語句または数値を答える。

数論命題証明対偶整数の性質偶数奇数
2025/6/11

1. 問題の内容

nnを自然数とする。n2n^2が偶数でないならば、nnは偶数でないことを証明せよ。穴埋め形式の問題であり、エ、オ、カ、キ、クに当てはまる適切な語句または数値を答える。

2. 解き方の手順

まず、与えられた命題の対偶を考える。「n2n^2が偶数でないならば、nnは偶数でない」の対偶は、「nnが偶数ならば、n2n^2は偶数である」である。したがって、エには「対偶」が入る。
nnが偶数のとき、nnは整数kkを用いて、n=2kn = 2kと表される。したがって、オには「2」が入る。
このとき、n2=(2k)2=4k2=22k2n^2 = (2k)^2 = 4k^2 = 2 \cdot 2k^2 となる。
したがって、カには「4」、キには「2」が入る。
2k22k^2は整数であるから、n2n^2は偶数である。よって、対偶が真より、もとの命題も真である。したがって、クには「真」が入る。

3. 最終的な答え

エ:③
オ:2
カ:4
キ:2
ク:④

「数論」の関連問題

与えられた割り算の問題、余りの計算の問題、一次合同式の問題を解きます。

合同式剰余算整数の性質
2025/6/13

$p = n - 1$ は 4 で割ると 3 余る素数とし、$\mathbb{F}_p^{\times} = \mathbb{F}_p \setminus \{0\}$ とする。以下の手順で定理 7....

有限体素数平方数BIBデザイン直交配列
2025/6/13

5で割ると2余り、7で割ると4余る自然数の中で、100に最も近い自然数を求めます。

合同式剰余平方数整数の性質
2025/6/13

この問題は、割り算の表現、余りの計算、一次合同式の計算に関する問題です。具体的には、以下の8つの問題を解く必要があります。 1. 216 ÷ 11 を a = bq + r の形で表す(ただし、0 ≤...

合同式剰余割り算合同算術
2025/6/13

自然数 $N$ が与えられており、$3N$ を 5 で割ると 4 余り、$N+1$ を 7 で割ると割り切れるという条件のもとで、$N$ を 35 で割ったときの余りを、選択肢の中から選ぶ問題です。

合同式剰余整数の性質方程式
2025/6/13

4桁の自然数 $n$ の千の位、百の位、十の位、一の位の数字をそれぞれ $a, b, c, d$ とします。条件 $a \ge b > c > d$ を満たす $n$ は全部で何個あるかを求める問題で...

組み合わせ整数不等式桁数
2025/6/13

整数 $n$ について、命題「$3n$ が偶数ならば、$n$ は偶数である」を、対偶を考えることによって証明する。

整数の性質証明対偶
2025/6/12

自然数 $n$ について、「$n$ が素数ならば、$n$ は奇数である」という命題が偽であることを示す問題です。

素数命題反例真偽
2025/6/12

(1) $n$ は整数とする。対偶を利用して、次の命題を証明せよ。 $n^2$ が 3 の倍数ならば、$n$ は 3 の倍数である。 (2) (1)を利用して、$\sqrt{3}$ が無理数であること...

対偶背理法整数の性質無理数平方根
2025/6/12

$\sqrt{6}$ が無理数であることを用いて、$\frac{1+2\sqrt{6}}{3}$ が無理数であることを証明する問題です。

無理数背理法有理数平方根
2025/6/12