次の極限値を求める問題です。 $\lim_{x \to 0} \frac{\sin x - \sin(\sin x)}{\sin x - x}$解析学極限テイラー展開三角関数sin2025/6/121. 問題の内容次の極限値を求める問題です。limx→0sinx−sin(sinx)sinx−x\lim_{x \to 0} \frac{\sin x - \sin(\sin x)}{\sin x - x}limx→0sinx−xsinx−sin(sinx)2. 解き方の手順まず、sinx\sin xsinx のテイラー展開を考えます。sinx=x−x33!+x55!−…\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dotssinx=x−3!x3+5!x5−… です。sinx=x−x36+O(x5)\sin x = x - \frac{x^3}{6} + O(x^5)sinx=x−6x3+O(x5) を用います。sin(sinx)\sin(\sin x)sin(sinx) を展開します。sin(sinx)=sinx−(sinx)36+O((sinx)5)\sin(\sin x) = \sin x - \frac{(\sin x)^3}{6} + O((\sin x)^5)sin(sinx)=sinx−6(sinx)3+O((sinx)5)sin(sinx)=(x−x36+O(x5))−(x−x36+O(x5))36+O(x5)\sin(\sin x) = (x - \frac{x^3}{6} + O(x^5)) - \frac{(x - \frac{x^3}{6} + O(x^5))^3}{6} + O(x^5)sin(sinx)=(x−6x3+O(x5))−6(x−6x3+O(x5))3+O(x5)sin(sinx)=x−x36−x36+O(x5)=x−x33+O(x5)\sin(\sin x) = x - \frac{x^3}{6} - \frac{x^3}{6} + O(x^5) = x - \frac{x^3}{3} + O(x^5)sin(sinx)=x−6x3−6x3+O(x5)=x−3x3+O(x5)したがって、sinx−sin(sinx)=(x−x36+O(x5))−(x−x33+O(x5))=x33−x36+O(x5)=x36+O(x5)\sin x - \sin(\sin x) = (x - \frac{x^3}{6} + O(x^5)) - (x - \frac{x^3}{3} + O(x^5)) = \frac{x^3}{3} - \frac{x^3}{6} + O(x^5) = \frac{x^3}{6} + O(x^5)sinx−sin(sinx)=(x−6x3+O(x5))−(x−3x3+O(x5))=3x3−6x3+O(x5)=6x3+O(x5)sinx−x=x−x36+O(x5)−x=−x36+O(x5)\sin x - x = x - \frac{x^3}{6} + O(x^5) - x = -\frac{x^3}{6} + O(x^5)sinx−x=x−6x3+O(x5)−x=−6x3+O(x5)limx→0sinx−sin(sinx)sinx−x=limx→0x36+O(x5)−x36+O(x5)=limx→016+O(x2)−16+O(x2)=16−16=−1\lim_{x \to 0} \frac{\sin x - \sin(\sin x)}{\sin x - x} = \lim_{x \to 0} \frac{\frac{x^3}{6} + O(x^5)}{-\frac{x^3}{6} + O(x^5)} = \lim_{x \to 0} \frac{\frac{1}{6} + O(x^2)}{-\frac{1}{6} + O(x^2)} = \frac{\frac{1}{6}}{-\frac{1}{6}} = -1limx→0sinx−xsinx−sin(sinx)=limx→0−6x3+O(x5)6x3+O(x5)=limx→0−61+O(x2)61+O(x2)=−6161=−13. 最終的な答え-1