$a=5$, $b=3$, $c=7$のとき、角$C$の大きさを求めなさい。

幾何学三角比余弦定理三角形角度
2025/6/12

1. 問題の内容

a=5a=5, b=3b=3, c=7c=7のとき、角CCの大きさを求めなさい。

2. 解き方の手順

余弦定理を用いて角CCを求めます。余弦定理は以下の通りです。
c2=a2+b22abcosCc^2 = a^2 + b^2 - 2ab \cos C
この式をcosC\cos Cについて解くと、
cosC=a2+b2c22ab\cos C = \frac{a^2 + b^2 - c^2}{2ab}
与えられた値を代入すると、
cosC=52+3272253=25+94930=1530=12\cos C = \frac{5^2 + 3^2 - 7^2}{2 \cdot 5 \cdot 3} = \frac{25 + 9 - 49}{30} = \frac{-15}{30} = -\frac{1}{2}
cosC=12\cos C = -\frac{1}{2}となる角CCを求めます。0<C<1800^\circ < C < 180^\circの範囲で考えると、
C=120C = 120^\circ

3. 最終的な答え

C=120C = 120^\circ

「幾何学」の関連問題

図に示された角度の情報から、$x$ の角度を求める問題です。

角度三角形四角形内角の和
2025/6/13

図形の角度xを求める問題です。図形は2つの三角形を組み合わせた四角形であり、既知の角度は40°、60°、80°です。

角度三角形四角形内角の和対頂角
2025/6/13

長方形ABCDを対角線ACで折り、点Bが移動した点をEとし、辺ADと辺CEの交点をFとする。 (1) $\triangle AEF$と合同な三角形を選ぶ。 (2) $\triangle FAC$はどん...

幾何図形合同相似長方形折り返し二等辺三角形
2025/6/13

$\triangle ABC$と$\triangle DEF$において、$\angle B = \angle E = 90^\circ$, $AB = DE$, $AC = DF$のとき、$\tria...

三角形の合同直角三角形合同条件三平方の定理
2025/6/13

正方形ABCDを線分PQで折り返した図が与えられています。$\angle RPB = 40^\circ$のとき、以下の2つの角度を求める問題です。 (1) $\angle RPQ$の大きさ (2) $...

角度正方形折り返し図形
2025/6/13

与えられた五角形の角度の情報から、角度 $x$ を求める問題です。五角形の外角が与えられている場合、外角の和が $360^\circ$ であることを利用して解きます。

角度五角形外角内角
2025/6/13

図において、$\angle A = 25^\circ$, $\angle B = 52^\circ$, $\angle ADC = 110^\circ$ が与えられているとき、$\angle x$ の...

角度三角形内角の和
2025/6/13

画像に示された三角関数の式を完成させる問題です。具体的には、sinをcosに、cosをsinに変換する問題と、sinθとcosθに分解する問題が含まれています。

三角関数三角関数の変換加法定理sincos
2025/6/13

三角形ABCにおいて、$\angle A = 67^\circ$, $\angle B = 35^\circ$, $\angle C = 24^\circ$ である。線分BEとCDの交点をFとする。こ...

三角形角度内角の和外角
2025/6/13

$\triangle ABC$ と $\triangle DEF$ において、$\angle B = \angle E = 90^\circ$, $AB = DE$, $AC = DF$ のとき、$\...

三角形の合同直角三角形合同条件ピタゴラスの定理
2025/6/13