関数 $y = 3x + 5$ について、$x$ が 1 から 4 まで変化するときの平均変化率を求める問題です。

解析学平均変化率一次関数変化の割合
2025/6/12

1. 問題の内容

関数 y=3x+5y = 3x + 5 について、xx が 1 から 4 まで変化するときの平均変化率を求める問題です。

2. 解き方の手順

平均変化率は、yの変化量xの変化量\frac{yの変化量}{xの変化量} で求められます。
まず、x=1x=1 のときの yy の値を求めます。
y=3(1)+5=3+5=8y = 3(1) + 5 = 3 + 5 = 8
次に、x=4x=4 のときの yy の値を求めます。
y=3(4)+5=12+5=17y = 3(4) + 5 = 12 + 5 = 17
xx の変化量は、41=34 - 1 = 3 です。
yy の変化量は、178=917 - 8 = 9 です。
平均変化率は、yの変化量xの変化量=93=3\frac{yの変化量}{xの変化量} = \frac{9}{3} = 3 となります。

3. 最終的な答え

平均変化率は 3 です。

「解析学」の関連問題

次の極限を求めます。 $\displaystyle \lim_{x \to 1} \frac{\sin \pi x}{x-1}$

極限三角関数lim
2025/6/13

$\lim_{x \to 0} \frac{3 \sin^{-1}(\frac{x}{5})}{x}$ を求める問題です。

極限ロピタルの定理逆三角関数マクローリン展開
2025/6/13

$\lim_{x \to 0} \frac{\cos x - 1}{x \sin x}$ の値をロピタルの定理を用いて求め、$\frac{1}{[ア]}$ の形で表したときの$[ア]$に入る数字を求め...

極限ロピタルの定理微積分
2025/6/13

次の極限を求めます。 $\lim_{x \to \frac{\pi}{2}} \frac{x - \frac{\pi}{2}}{\tan x}$

極限三角関数置換不定形加法定理
2025/6/13

与えられた極限 $\lim_{x \to 1} \frac{1 - x^2}{\sin(x-1)}$ を計算する問題です。

極限三角関数因数分解
2025/6/13

与えられた極限 $\lim_{x \to 1} \frac{1 - x^2}{\sin(x - 1)}$ を計算します。

極限三角関数因数分解
2025/6/13

以下の極限値を求める問題です。 $\lim_{x \to \infty} x (\tan^{-1}x - \frac{\pi}{2})$ これは、$\lim_{x \to \infty} \frac{...

極限ロピタルの定理逆正接関数
2025/6/13

$a$を実数とする。$\theta$の方程式 $2\cos^2\theta + \sqrt{3}\sin2\theta - 4a(\sqrt{3}\cos\theta + \sin\theta - 2...

三角関数方程式解の個数二次方程式三角関数の合成微分積分
2025/6/13

次の極限を求める問題です。 $\lim_{x \to \frac{\pi}{2}} \frac{x - \frac{\pi}{2}}{\tan x}$

極限ロピタルの定理微分三角関数
2025/6/13

$\lim_{x\to 0} \frac{\cos x - 1}{x \sin x}$ の極限値をロピタルの定理を用いて求め、その結果を $-\frac{1}{ア}$ の形で表すとき、ア に入る数字を...

極限ロピタルの定理三角関数微分
2025/6/13