定積分 $\int_0^1 \frac{1}{x^3+1} dx$ を計算します。解析学定積分部分分数分解置換積分逆三角関数2025/3/91. 問題の内容定積分 ∫011x3+1dx\int_0^1 \frac{1}{x^3+1} dx∫01x3+11dx を計算します。2. 解き方の手順まず、被積分関数を部分分数分解します。x3+1=(x+1)(x2−x+1)x^3 + 1 = (x+1)(x^2-x+1)x3+1=(x+1)(x2−x+1) なので、1x3+1=Ax+1+Bx+Cx2−x+1\frac{1}{x^3+1} = \frac{A}{x+1} + \frac{Bx+C}{x^2-x+1}x3+11=x+1A+x2−x+1Bx+C と置きます。両辺に x3+1x^3+1x3+1 を掛けると、1=A(x2−x+1)+(Bx+C)(x+1)1 = A(x^2-x+1) + (Bx+C)(x+1)1=A(x2−x+1)+(Bx+C)(x+1)1=Ax2−Ax+A+Bx2+Bx+Cx+C1 = Ax^2 - Ax + A + Bx^2 + Bx + Cx + C1=Ax2−Ax+A+Bx2+Bx+Cx+C1=(A+B)x2+(−A+B+C)x+(A+C)1 = (A+B)x^2 + (-A+B+C)x + (A+C)1=(A+B)x2+(−A+B+C)x+(A+C)係数を比較すると、A+B=0A+B = 0A+B=0−A+B+C=0-A+B+C = 0−A+B+C=0A+C=1A+C = 1A+C=1これらの連立方程式を解きます。B=−AB = -AB=−A−A−A+C=0⇒C=2A-A-A+C = 0 \Rightarrow C = 2A−A−A+C=0⇒C=2AA+2A=1⇒3A=1⇒A=13A+2A = 1 \Rightarrow 3A = 1 \Rightarrow A = \frac{1}{3}A+2A=1⇒3A=1⇒A=31よって、B=−13B = -\frac{1}{3}B=−31, C=23C = \frac{2}{3}C=32したがって、1x3+1=1/3x+1+(−1/3)x+2/3x2−x+1=13(1x+1+−x+2x2−x+1)\frac{1}{x^3+1} = \frac{1/3}{x+1} + \frac{(-1/3)x+2/3}{x^2-x+1} = \frac{1}{3} \left( \frac{1}{x+1} + \frac{-x+2}{x^2-x+1} \right)x3+11=x+11/3+x2−x+1(−1/3)x+2/3=31(x+11+x2−x+1−x+2)∫011x3+1dx=13∫01(1x+1+−x+2x2−x+1)dx\int_0^1 \frac{1}{x^3+1} dx = \frac{1}{3} \int_0^1 \left( \frac{1}{x+1} + \frac{-x+2}{x^2-x+1} \right) dx∫01x3+11dx=31∫01(x+11+x2−x+1−x+2)dxここで、−x+2x2−x+1=−12(2x−1)+32x2−x+1=−122x−1x2−x+1+321x2−x+1\frac{-x+2}{x^2-x+1} = \frac{-\frac{1}{2}(2x-1) + \frac{3}{2}}{x^2-x+1} = -\frac{1}{2} \frac{2x-1}{x^2-x+1} + \frac{3}{2} \frac{1}{x^2-x+1}x2−x+1−x+2=x2−x+1−21(2x−1)+23=−21x2−x+12x−1+23x2−x+11∫011x+1dx=[ln(x+1)]01=ln(2)−ln(1)=ln2\int_0^1 \frac{1}{x+1} dx = [\ln(x+1)]_0^1 = \ln(2) - \ln(1) = \ln 2∫01x+11dx=[ln(x+1)]01=ln(2)−ln(1)=ln2∫012x−1x2−x+1dx=[ln(x2−x+1)]01=ln(1)−ln(1)=0\int_0^1 \frac{2x-1}{x^2-x+1} dx = [\ln(x^2-x+1)]_0^1 = \ln(1) - \ln(1) = 0∫01x2−x+12x−1dx=[ln(x2−x+1)]01=ln(1)−ln(1)=0∫011x2−x+1dx=∫011(x−12)2+34dx=43∫011(2x−13)2+1dx\int_0^1 \frac{1}{x^2-x+1} dx = \int_0^1 \frac{1}{(x-\frac{1}{2})^2 + \frac{3}{4}} dx = \frac{4}{3} \int_0^1 \frac{1}{(\frac{2x-1}{\sqrt{3}})^2 + 1} dx∫01x2−x+11dx=∫01(x−21)2+431dx=34∫01(32x−1)2+11dxu=2x−13u = \frac{2x-1}{\sqrt{3}}u=32x−1 と置くと、du=23dxdu = \frac{2}{\sqrt{3}} dxdu=32dx より dx=32dudx = \frac{\sqrt{3}}{2} dudx=23dux=0x=0x=0 のとき u=−13u = -\frac{1}{\sqrt{3}}u=−31x=1x=1x=1 のとき u=13u = \frac{1}{\sqrt{3}}u=31∫011x2−x+1dx=43∫−13131u2+132du=233[arctanu]−1313\int_0^1 \frac{1}{x^2-x+1} dx = \frac{4}{3} \int_{-\frac{1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}} \frac{1}{u^2+1} \frac{\sqrt{3}}{2} du = \frac{2\sqrt{3}}{3} [\arctan u]_{-\frac{1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}}∫01x2−x+11dx=34∫−3131u2+1123du=323[arctanu]−3131=233(arctan13−arctan(−13))=233(π6−(−π6))=233π3=2π39= \frac{2\sqrt{3}}{3} \left( \arctan \frac{1}{\sqrt{3}} - \arctan (-\frac{1}{\sqrt{3}}) \right) = \frac{2\sqrt{3}}{3} \left( \frac{\pi}{6} - (-\frac{\pi}{6}) \right) = \frac{2\sqrt{3}}{3} \frac{\pi}{3} = \frac{2\pi\sqrt{3}}{9}=323(arctan31−arctan(−31))=323(6π−(−6π))=3233π=92π3∫011x3+1dx=13(ln2+32⋅2π39)=13ln2+3π9\int_0^1 \frac{1}{x^3+1} dx = \frac{1}{3} \left( \ln 2 + \frac{3}{2} \cdot \frac{2\pi\sqrt{3}}{9} \right) = \frac{1}{3} \ln 2 + \frac{\sqrt{3}\pi}{9}∫01x3+11dx=31(ln2+23⋅92π3)=31ln2+93π3. 最終的な答え13ln2+3π9\frac{1}{3} \ln 2 + \frac{\sqrt{3}\pi}{9}31ln2+93π