$\int \cos(5x + \frac{\pi}{3}) dx$ を計算する問題です。

解析学積分三角関数置換積分
2025/3/9

1. 問題の内容

cos(5x+π3)dx\int \cos(5x + \frac{\pi}{3}) dx を計算する問題です。

2. 解き方の手順

三角関数の積分と置換積分を使います。
まず、u=5x+π3u = 5x + \frac{\pi}{3} と置換します。
すると、dudx=5\frac{du}{dx} = 5 となり、dx=15dudx = \frac{1}{5}du となります。
したがって、
cos(5x+π3)dx=cos(u)15du=15cos(u)du\int \cos(5x + \frac{\pi}{3}) dx = \int \cos(u) \cdot \frac{1}{5} du = \frac{1}{5} \int \cos(u) du
cos(u)\cos(u) の積分は sin(u)\sin(u) なので、
15cos(u)du=15sin(u)+C\frac{1}{5} \int \cos(u) du = \frac{1}{5} \sin(u) + C
最後に、uu5x+π35x + \frac{\pi}{3} に戻すと、
15sin(u)+C=15sin(5x+π3)+C\frac{1}{5} \sin(u) + C = \frac{1}{5} \sin(5x + \frac{\pi}{3}) + C

3. 最終的な答え

15sin(5x+π3)+C\frac{1}{5} \sin(5x + \frac{\pi}{3}) + C

「解析学」の関連問題

問題は、定積分 $\int_{1}^{e} \log x \, dx$ を計算することです。ここで、$\log x$ は自然対数(底が $e$ の対数)を表します。

定積分部分積分対数関数
2025/7/27

定積分 $\int_{1}^{e} \log x \, dx$ を計算します。ここで $\log x$ は自然対数とします。

定積分部分積分法自然対数
2025/7/27

与えられた関数 $y = \frac{1}{x\sqrt{x}}$ を微分する問題です。

微分関数の微分冪関数合成関数の微分
2025/7/27

次の定積分の値を求めます。 $\int_{0}^{\pi} \sin x \cos^4 x dx$

定積分置換積分偶関数
2025/7/27

定積分 $\int_{0}^{\pi} \sin x \cos^4 x \, dx$ の値を求める。

定積分置換積分部分積分面積体積回転体積分
2025/7/27

$\lim_{x \to 0} \frac{5^x - 1}{x}$ を求める問題です。まず、$5^x$を$e^{kx}$の形に変形し、$k$の値を求めます。その後、極限を計算します。

極限指数関数対数関数微分
2025/7/27

$\lim_{x \to 0} (1 + \frac{x}{3})^{\frac{1}{x}}$ を求める問題です。

極限指数関数置換
2025/7/27

次の関数のグラフの概形を描き、極小値、極大値、漸近線を求める問題です。ここでは、(4), (5), (6) のうち、(4) $y = f(x) = 2x^3 - 9x^2 + 12x - 5$、(5)...

関数のグラフ微分極値漸近線
2025/7/27

与えられた6つの不定積分を計算します。積分定数は省略します。 (1) $\int (1+\sqrt{x})^2 dx$ (2) $\int \frac{x}{(x^2+1)^2} dx$ (3) $\...

不定積分置換積分部分積分部分分数分解
2025/7/27

関数 $y = f(x) = x^4 - 2x^2$ の、定義域 $-3 \leq x \leq 4$ における最大値と最小値を求める問題です。

最大値最小値微分増減表関数のグラフ
2025/7/27