完全競争市場におけるある財の需要曲線と供給曲線が与えられています。需要曲線は $X = 220 - 2P$、供給曲線は $X = -20 + 2P$ で表されます。ここで、$X$ は数量、$P$ は価格です。供給量が80に制限されているとき、消費者余剰を求める問題です。
2025/6/14
1. 問題の内容
完全競争市場におけるある財の需要曲線と供給曲線が与えられています。需要曲線は 、供給曲線は で表されます。ここで、 は数量、 は価格です。供給量が80に制限されているとき、消費者余剰を求める問題です。
2. 解き方の手順
まず、供給量が80に制限されているときの価格を求めます。供給曲線に を代入します。
次に、需要曲線に を代入して、消費者がこの数量に対して支払ってもよいと考える価格を求めます。
消費者余剰は、消費者が支払ってもよいと考える価格と実際に支払う価格の差額の合計です。この場合、消費者余剰は、需要曲線と価格線()によって囲まれた三角形の面積として計算されます。
三角形の高さは、需要曲線が縦軸と交わる点の価格(のときの価格)から、実際の価格を引いたものです。
したがって、三角形の高さは です。
三角形の底辺は供給量、つまり です。
消費者余剰は、
3. 最終的な答え
2400