定積分 $\int_{0}^{1} \frac{x^2+3}{x^2+1} dx$ を計算します。解析学定積分積分arctan計算2025/6/141. 問題の内容定積分 ∫01x2+3x2+1dx\int_{0}^{1} \frac{x^2+3}{x^2+1} dx∫01x2+1x2+3dx を計算します。2. 解き方の手順まず、被積分関数を変形します。x2+3x2+1=x2+1+2x2+1=1+2x2+1\frac{x^2+3}{x^2+1} = \frac{x^2+1+2}{x^2+1} = 1 + \frac{2}{x^2+1}x2+1x2+3=x2+1x2+1+2=1+x2+12したがって、∫01x2+3x2+1dx=∫01(1+2x2+1)dx\int_{0}^{1} \frac{x^2+3}{x^2+1} dx = \int_{0}^{1} (1 + \frac{2}{x^2+1}) dx∫01x2+1x2+3dx=∫01(1+x2+12)dx定積分の性質より、∫01(1+2x2+1)dx=∫011dx+2∫011x2+1dx\int_{0}^{1} (1 + \frac{2}{x^2+1}) dx = \int_{0}^{1} 1 dx + 2 \int_{0}^{1} \frac{1}{x^2+1} dx∫01(1+x2+12)dx=∫011dx+2∫01x2+11dx∫011dx=[x]01=1−0=1\int_{0}^{1} 1 dx = [x]_{0}^{1} = 1 - 0 = 1∫011dx=[x]01=1−0=1∫011x2+1dx=[arctan(x)]01=arctan(1)−arctan(0)=π4−0=π4\int_{0}^{1} \frac{1}{x^2+1} dx = [\arctan(x)]_{0}^{1} = \arctan(1) - \arctan(0) = \frac{\pi}{4} - 0 = \frac{\pi}{4}∫01x2+11dx=[arctan(x)]01=arctan(1)−arctan(0)=4π−0=4πよって、∫01x2+3x2+1dx=1+2⋅π4=1+π2\int_{0}^{1} \frac{x^2+3}{x^2+1} dx = 1 + 2 \cdot \frac{\pi}{4} = 1 + \frac{\pi}{2}∫01x2+1x2+3dx=1+2⋅4π=1+2π3. 最終的な答え1+π21 + \frac{\pi}{2}1+2π