与えられた極限を計算します。 $$ \lim_{x \to c} \frac{c^2 f(x) - x^2 f(c)}{x - c} $$解析学極限微分導関数2025/6/141. 問題の内容与えられた極限を計算します。limx→cc2f(x)−x2f(c)x−c \lim_{x \to c} \frac{c^2 f(x) - x^2 f(c)}{x - c} x→climx−cc2f(x)−x2f(c)2. 解き方の手順分子に c2f(c)−c2f(c)=0c^2 f(c) - c^2 f(c) = 0c2f(c)−c2f(c)=0 を加えます。すると、limx→cc2f(x)−c2f(c)+c2f(c)−x2f(c)x−c \lim_{x \to c} \frac{c^2 f(x) - c^2 f(c) + c^2 f(c) - x^2 f(c)}{x - c} x→climx−cc2f(x)−c2f(c)+c2f(c)−x2f(c)=limx→cc2(f(x)−f(c))−f(c)(x2−c2)x−c = \lim_{x \to c} \frac{c^2 (f(x) - f(c)) - f(c) (x^2 - c^2)}{x - c} =x→climx−cc2(f(x)−f(c))−f(c)(x2−c2)=limx→cc2f(x)−f(c)x−c−f(c)limx→cx2−c2x−c = \lim_{x \to c} c^2 \frac{f(x) - f(c)}{x - c} - f(c) \lim_{x \to c} \frac{x^2 - c^2}{x - c} =x→climc2x−cf(x)−f(c)−f(c)x→climx−cx2−c2ここで、f′(c)=limx→cf(x)−f(c)x−cf'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}f′(c)=limx→cx−cf(x)−f(c) であり、x2−c2=(x−c)(x+c)x^2 - c^2 = (x - c)(x + c)x2−c2=(x−c)(x+c) であることを用いると、=c2f′(c)−f(c)limx→c(x+c) = c^2 f'(c) - f(c) \lim_{x \to c} (x + c) =c2f′(c)−f(c)x→clim(x+c)=c2f′(c)−f(c)(c+c) = c^2 f'(c) - f(c) (c + c) =c2f′(c)−f(c)(c+c)=c2f′(c)−2cf(c) = c^2 f'(c) - 2c f(c) =c2f′(c)−2cf(c)3. 最終的な答えc2f′(c)−2cf(c) c^2 f'(c) - 2c f(c) c2f′(c)−2cf(c)