$\lim_{k \to 0} (1+k)^{\frac{1}{k}} = e$ を用いて、次の極限を求めます。 $\lim_{x \to 0} \frac{\log(1+x)}{x}$

解析学極限テイラー展開ロピタルの定理対数関数
2025/6/14

1. 問題の内容

limk0(1+k)1k=e\lim_{k \to 0} (1+k)^{\frac{1}{k}} = e を用いて、次の極限を求めます。
limx0log(1+x)x\lim_{x \to 0} \frac{\log(1+x)}{x}

2. 解き方の手順

log(1+x)\log(1+x)のテイラー展開を利用します。xxが0に近いとき、log(1+x)xx22+x33\log(1+x) \approx x - \frac{x^2}{2} + \frac{x^3}{3} - \cdotsです。
したがって、
log(1+x)xxx22+x33x=1x2+x23\frac{\log(1+x)}{x} \approx \frac{x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots}{x} = 1 - \frac{x}{2} + \frac{x^2}{3} - \cdots
x0x \to 0のとき、log(1+x)x\frac{\log(1+x)}{x}は1に近づきます。
別の解法として、ロピタルの定理を使うことができます。
limx0log(1+x)x\lim_{x \to 0} \frac{\log(1+x)}{x}00\frac{0}{0}の不定形なので、ロピタルの定理を適用できます。分子と分母をそれぞれ微分すると、
limx011+x1=limx011+x=11+0=1\lim_{x \to 0} \frac{\frac{1}{1+x}}{1} = \lim_{x \to 0} \frac{1}{1+x} = \frac{1}{1+0} = 1

3. 最終的な答え

1

「解析学」の関連問題

$0 \le \theta < 2\pi$ のとき、関数 $y = \cos^2\theta - \cos\theta$ の最大値と最小値を求め、そのときの $\theta$ の値を求めよ。

三角関数最大値最小値cos平方完成微分
2025/6/14

$0 \le \theta < 2\pi$ のとき、以下の2つの不等式を解く問題です。 (2) $\sin \theta > \frac{1}{\sqrt{2}}$ (3) $\sin \theta ...

三角関数不等式三角不等式sin
2025/6/14

問題は、三角不等式を解くことです。具体的には、以下の2つの不等式を解きます。 (2) $\sin \theta > \frac{1}{\sqrt{2}}$ (3) $\sin \theta < \fr...

三角関数三角不等式不等式解の範囲単位円
2025/6/14

$0 \le \theta < 2\pi$ のとき、次の方程式を解く。 (1) $\sin(\theta - \frac{\pi}{6}) = -\frac{1}{\sqrt{2}}$ (2) $\c...

三角関数方程式解の公式
2025/6/14

問題は、次の級数の和 $S$ を求めることです。 $S = 1 + \frac{2}{3} + \frac{3}{3^2} + \cdots + \frac{n}{3^{n-1}}$ 画像には、$S$...

級数無限級数等比数列数列の和
2025/6/14

問題66:$\sum_{k=1}^{n} \frac{1}{\sqrt{k+2} + \sqrt{k+1}}$ を求めよ。 問題67:$S = 1 \cdot 1 + 2 \cdot 4 + 3 \c...

級数Σtelescoping sum数列等比数列
2025/6/14

次の2つの方程式を解く問題です。 (1) $2\sin\theta = -\sqrt{3}$ (2) $\sqrt{2}\cos\theta = -1$

三角関数方程式解の公式
2025/6/14

$0 \le \theta < 2\pi$ のとき、次の方程式を解く問題です。 (1) $\sin\theta = \frac{\sqrt{3}}{2}$ (2) $2\cos\theta + 1 =...

三角関数方程式sincos解の公式単位円
2025/6/14

数列 $\{a_n\}$ の極限を求める問題です。数列の一般項は、$a_n = \sqrt{n+2} - \sqrt{n}$ で与えられます。

極限数列平方根有理化
2025/6/14

放物線 $y = -x^2 + 4x$ の接線のうち、点 $(0, 9)$ を通る2本の接線を求める。 次に、放物線と2つの接線で囲まれた部分の面積を求める。

微分積分放物線接線面積
2025/6/14