与えられた式 $3(3x+1)(3x-1)$ を展開して簡略化せよ。

代数学展開因数分解式の簡略化多項式
2025/6/15

1. 問題の内容

与えられた式 3(3x+1)(3x1)3(3x+1)(3x-1) を展開して簡略化せよ。

2. 解き方の手順

まず、(3x+1)(3x1)(3x+1)(3x-1)の部分を展開します。これは (a+b)(ab)=a2b2(a+b)(a-b) = a^2 - b^2 の公式を利用できるので、
(3x+1)(3x1)=(3x)212=9x21(3x+1)(3x-1) = (3x)^2 - 1^2 = 9x^2 - 1
となります。
次に、この結果に3を掛けます。
3(9x21)=3(9x2)3(1)=27x233(9x^2 - 1) = 3(9x^2) - 3(1) = 27x^2 - 3

3. 最終的な答え

27x2327x^2 - 3

「代数学」の関連問題

与えられた問題は、総和を計算する問題です。具体的には、以下の式で表される数列の和を求める必要があります。 $\sum_{k=1}^{n-1} (-2)^{k-1}$

数列等比数列総和シグマ
2025/6/15

$\sum_{k=1}^{n} (k-1)^3$ を計算する問題です。

級数シグマ公式計算
2025/6/15

与えられた問題は、総和の計算です。具体的には、$\sum_{k=1}^{n-1} (4k+7)$ を計算します。

数列総和シグマ等差数列
2025/6/15

与えられた問題は、次の和を計算することです。 $\sum_{k=1}^n r^{k-1}$

等比数列級数和の公式数列
2025/6/15

問題は、総和記号 $\sum$ を使った数式の値を求めることです。具体的には、 $\sum_{k=0}^{n-1} r^k$ を計算する必要があります。

等比数列総和記号等比数列の和数列
2025/6/15

数列 $2 \cdot 3, 3 \cdot 4, 4 \cdot 5, 5 \cdot 6, \dots$ の一般項を求める問題です。

数列一般項式の展開
2025/6/15

数列 $1 \cdot 2, 2 \cdot 4, 3 \cdot 6, 4 \cdot 8, \dots$ の初項から第 $n$ 項までの和を求めます。

数列シグマ級数等差数列公式
2025/6/15

数列 $1\cdot 2, 2\cdot 4, 3\cdot 6, 4\cdot 8, \dots$ の初項から第 $n$ 項までの和 $S_n$ を求めよ。

数列級数シグマ公式
2025/6/15

与えられた等式を指定された文字について解く問題です。 (1) $y = ax$ を $a$ について解く。 (3) $x + y = 6$ を $x$ について解く。

方程式文字式の計算解く
2025/6/15

与えられた等式を指定された文字について解く問題です。 (1) $l = 2(a+b)$ を $a$ について解きます。 (2) $4x + 2y = 1$ を $y$ について解きます。

方程式式の変形文字式の計算
2025/6/15