$\sin(\theta + \frac{2}{3}\pi) + \sin(\theta + \frac{4}{3}\pi)$を$\sin\theta$と$\cos\theta$を用いて表せ。解析学三角関数加法定理三角関数の合成2025/6/161. 問題の内容sin(θ+23π)+sin(θ+43π)\sin(\theta + \frac{2}{3}\pi) + \sin(\theta + \frac{4}{3}\pi)sin(θ+32π)+sin(θ+34π)をsinθ\sin\thetasinθとcosθ\cos\thetacosθを用いて表せ。2. 解き方の手順まず、三角関数の加法定理を利用して、それぞれのsin\sinsinの項を展開します。加法定理は以下の通りです。sin(A+B)=sinAcosB+cosAsinB\sin(A+B) = \sin A \cos B + \cos A \sin Bsin(A+B)=sinAcosB+cosAsinBこれを用いて、与えられた式を展開すると、sin(θ+23π)=sinθcos(23π)+cosθsin(23π)\sin(\theta + \frac{2}{3}\pi) = \sin\theta \cos(\frac{2}{3}\pi) + \cos\theta \sin(\frac{2}{3}\pi)sin(θ+32π)=sinθcos(32π)+cosθsin(32π)sin(θ+43π)=sinθcos(43π)+cosθsin(43π)\sin(\theta + \frac{4}{3}\pi) = \sin\theta \cos(\frac{4}{3}\pi) + \cos\theta \sin(\frac{4}{3}\pi)sin(θ+34π)=sinθcos(34π)+cosθsin(34π)となります。cos(23π)=−12\cos(\frac{2}{3}\pi) = -\frac{1}{2}cos(32π)=−21, sin(23π)=32\sin(\frac{2}{3}\pi) = \frac{\sqrt{3}}{2}sin(32π)=23cos(43π)=−12\cos(\frac{4}{3}\pi) = -\frac{1}{2}cos(34π)=−21, sin(43π)=−32\sin(\frac{4}{3}\pi) = -\frac{\sqrt{3}}{2}sin(34π)=−23これらの値を代入すると、sin(θ+23π)=−12sinθ+32cosθ\sin(\theta + \frac{2}{3}\pi) = -\frac{1}{2}\sin\theta + \frac{\sqrt{3}}{2}\cos\thetasin(θ+32π)=−21sinθ+23cosθsin(θ+43π)=−12sinθ−32cosθ\sin(\theta + \frac{4}{3}\pi) = -\frac{1}{2}\sin\theta - \frac{\sqrt{3}}{2}\cos\thetasin(θ+34π)=−21sinθ−23cosθしたがって、sin(θ+23π)+sin(θ+43π)=(−12sinθ+32cosθ)+(−12sinθ−32cosθ)\sin(\theta + \frac{2}{3}\pi) + \sin(\theta + \frac{4}{3}\pi) = (-\frac{1}{2}\sin\theta + \frac{\sqrt{3}}{2}\cos\theta) + (-\frac{1}{2}\sin\theta - \frac{\sqrt{3}}{2}\cos\theta)sin(θ+32π)+sin(θ+34π)=(−21sinθ+23cosθ)+(−21sinθ−23cosθ)=−12sinθ+32cosθ−12sinθ−32cosθ= -\frac{1}{2}\sin\theta + \frac{\sqrt{3}}{2}\cos\theta -\frac{1}{2}\sin\theta - \frac{\sqrt{3}}{2}\cos\theta=−21sinθ+23cosθ−21sinθ−23cosθ=−sinθ= -\sin\theta=−sinθ3. 最終的な答え−sinθ-\sin\theta−sinθ