与えられた三角関数の式を簡略化します。 与えられた式は $\sin(\theta + \frac{2}{3}\pi) + \sin(\theta + \frac{4}{3}\pi)$ です。解析学三角関数三角関数の加法定理三角関数の合成2025/6/161. 問題の内容与えられた三角関数の式を簡略化します。与えられた式は sin(θ+23π)+sin(θ+43π)\sin(\theta + \frac{2}{3}\pi) + \sin(\theta + \frac{4}{3}\pi)sin(θ+32π)+sin(θ+34π) です。2. 解き方の手順三角関数の和の公式を用います。sin(A)+sin(B)=2sin(A+B2)cos(A−B2)\sin(A) + \sin(B) = 2 \sin(\frac{A+B}{2}) \cos(\frac{A-B}{2})sin(A)+sin(B)=2sin(2A+B)cos(2A−B)ここで、A=θ+23πA = \theta + \frac{2}{3}\piA=θ+32π、B=θ+43πB = \theta + \frac{4}{3}\piB=θ+34π とおきます。A+B2=(θ+23π)+(θ+43π)2=2θ+2π2=θ+π\frac{A+B}{2} = \frac{(\theta + \frac{2}{3}\pi) + (\theta + \frac{4}{3}\pi)}{2} = \frac{2\theta + 2\pi}{2} = \theta + \pi2A+B=2(θ+32π)+(θ+34π)=22θ+2π=θ+πA−B2=(θ+23π)−(θ+43π)2=−23π2=−π3\frac{A-B}{2} = \frac{(\theta + \frac{2}{3}\pi) - (\theta + \frac{4}{3}\pi)}{2} = \frac{-\frac{2}{3}\pi}{2} = -\frac{\pi}{3}2A−B=2(θ+32π)−(θ+34π)=2−32π=−3πしたがって、sin(θ+23π)+sin(θ+43π)=2sin(θ+π)cos(−π3)\sin(\theta + \frac{2}{3}\pi) + \sin(\theta + \frac{4}{3}\pi) = 2 \sin(\theta + \pi) \cos(-\frac{\pi}{3})sin(θ+32π)+sin(θ+34π)=2sin(θ+π)cos(−3π)sin(θ+π)=−sin(θ)\sin(\theta + \pi) = - \sin(\theta)sin(θ+π)=−sin(θ)cos(−π3)=cos(π3)=12\cos(-\frac{\pi}{3}) = \cos(\frac{\pi}{3}) = \frac{1}{2}cos(−3π)=cos(3π)=212sin(θ+π)cos(−π3)=2(−sin(θ))(12)=−sin(θ)2 \sin(\theta + \pi) \cos(-\frac{\pi}{3}) = 2 (-\sin(\theta)) (\frac{1}{2}) = - \sin(\theta)2sin(θ+π)cos(−3π)=2(−sin(θ))(21)=−sin(θ)3. 最終的な答え−sin(θ)-\sin(\theta)−sin(θ)