与えられた式 $(x-2y)^5 [x^2y^3]$ を展開し、整理する問題です。代数学二項定理多項式の展開式の整理2025/6/161. 問題の内容与えられた式 (x−2y)5[x2y3](x-2y)^5 [x^2y^3](x−2y)5[x2y3] を展開し、整理する問題です。2. 解き方の手順まず、二項定理を用いて(x−2y)5(x-2y)^5(x−2y)5を展開します。(x−2y)5=∑k=05(5k)x5−k(−2y)k(x-2y)^5 = \sum_{k=0}^{5} \binom{5}{k} x^{5-k} (-2y)^k(x−2y)5=∑k=05(k5)x5−k(−2y)k=(50)x5(−2y)0+(51)x4(−2y)1+(52)x3(−2y)2+(53)x2(−2y)3+(54)x1(−2y)4+(55)x0(−2y)5= \binom{5}{0} x^5 (-2y)^0 + \binom{5}{1} x^4 (-2y)^1 + \binom{5}{2} x^3 (-2y)^2 + \binom{5}{3} x^2 (-2y)^3 + \binom{5}{4} x^1 (-2y)^4 + \binom{5}{5} x^0 (-2y)^5=(05)x5(−2y)0+(15)x4(−2y)1+(25)x3(−2y)2+(35)x2(−2y)3+(45)x1(−2y)4+(55)x0(−2y)5=x5+5x4(−2y)+10x3(4y2)+10x2(−8y3)+5x(16y4)+(−32y5)= x^5 + 5 x^4 (-2y) + 10 x^3 (4y^2) + 10 x^2 (-8y^3) + 5 x (16y^4) + (-32y^5)=x5+5x4(−2y)+10x3(4y2)+10x2(−8y3)+5x(16y4)+(−32y5)=x5−10x4y+40x3y2−80x2y3+80xy4−32y5= x^5 - 10 x^4 y + 40 x^3 y^2 - 80 x^2 y^3 + 80 x y^4 - 32 y^5=x5−10x4y+40x3y2−80x2y3+80xy4−32y5次に、この展開した式にx2y3x^2y^3x2y3を掛けます。(x5−10x4y+40x3y2−80x2y3+80xy4−32y5)(x2y3)(x^5 - 10 x^4 y + 40 x^3 y^2 - 80 x^2 y^3 + 80 x y^4 - 32 y^5)(x^2y^3)(x5−10x4y+40x3y2−80x2y3+80xy4−32y5)(x2y3)=x7y3−10x6y4+40x5y5−80x4y6+80x3y7−32x2y8= x^7 y^3 - 10 x^6 y^4 + 40 x^5 y^5 - 80 x^4 y^6 + 80 x^3 y^7 - 32 x^2 y^8=x7y3−10x6y4+40x5y5−80x4y6+80x3y7−32x2y83. 最終的な答えx7y3−10x6y4+40x5y5−80x4y6+80x3y7−32x2y8x^7y^3 - 10x^6y^4 + 40x^5y^5 - 80x^4y^6 + 80x^3y^7 - 32x^2y^8x7y3−10x6y4+40x5y5−80x4y6+80x3y7−32x2y8