正六角形について、以下の数を求める問題です。 (1) 3個の頂点を結んでできる三角形の個数 (2) 4個の頂点を結んでできる四角形の個数 (3) 2個の頂点を結ぶ線分の本数 (4) 対角線の本数

幾何学組み合わせ正六角形図形三角形四角形対角線
2025/6/16

1. 問題の内容

正六角形について、以下の数を求める問題です。
(1) 3個の頂点を結んでできる三角形の個数
(2) 4個の頂点を結んでできる四角形の個数
(3) 2個の頂点を結ぶ線分の本数
(4) 対角線の本数

2. 解き方の手順

(1) 三角形の個数:
正六角形の6個の頂点から3個を選ぶ組み合わせの数を求めます。これは組み合わせの公式 nCr=n!r!(nr)!nCr = \frac{n!}{r!(n-r)!} で計算できます。ここで、n=6n=6r=3r=3 です。
6C3=6!3!(63)!=6!3!3!=6×5×43×2×1=206C3 = \frac{6!}{3!(6-3)!} = \frac{6!}{3!3!} = \frac{6 \times 5 \times 4}{3 \times 2 \times 1} = 20
(2) 四角形の個数:
正六角形の6個の頂点から4個を選ぶ組み合わせの数を求めます。ここで、n=6n=6r=4r=4 です。
6C4=6!4!(64)!=6!4!2!=6×52×1=156C4 = \frac{6!}{4!(6-4)!} = \frac{6!}{4!2!} = \frac{6 \times 5}{2 \times 1} = 15
(3) 線分の本数:
正六角形の6個の頂点から2個を選ぶ組み合わせの数を求めます。ここで、n=6n=6r=2r=2 です。
6C2=6!2!(62)!=6!2!4!=6×52×1=156C2 = \frac{6!}{2!(6-2)!} = \frac{6!}{2!4!} = \frac{6 \times 5}{2 \times 1} = 15
(4) 対角線の本数:
正六角形の頂点の数は6です。対角線の数は、線分の総数から辺の数を引くことで求められます。線分の総数は上記(3)で求めた15本です。正六角形の辺の数は6なので、対角線の本数は 156=915 - 6 = 9 本です。

3. 最終的な答え

(1) 三角形の個数:20個
(2) 四角形の個数:15個
(3) 線分の本数:15本
(4) 対角線の本数:9本

「幾何学」の関連問題

問題は、三角形に関する比率の問題のようです。 (2) では、線分 BC と CS の比 $BC:CS$ を求めることが求められています。 与えられた式はチェバの定理のようです: $\frac{CB}{...

チェバの定理メネラウスの定理比率三角形
2025/6/16

図に示された角度$\alpha$と$\beta$の値を求める問題です。

角度三角形内角の和対頂角
2025/6/16

(1) 平面上の点を直線 $y = x$ に関して対称な点に移す一次変換の行列を求めます。 (2) 平面上の点 $(4, -3)$ を、原点を中心として $30^\circ$ 回転した点の座標を求めま...

線形変換行列回転座標変換
2025/6/16

三角形ABCにおいて、$AB=6$, $BC=4$, $CA=3$である。三角形ABCの内心をIとし、直線AIと辺BCの交点をDとする。このとき、$BD:DC$と$AI:ID$を求めよ。

三角形内心内角の二等分線
2025/6/16

座標平面上に3点 O(0, 0), A(2, 3), B(6, 1) がある。点 P の位置ベクトル $\overrightarrow{OP}$ が $\overrightarrow{OP} = s\...

ベクトル座標平面図形線分三角形
2025/6/16

2つの直線がなす角 $\theta$ を求める問題です。ただし、$0 < \theta < \frac{\pi}{2}$ とします。 (1) $y = -3x$, $y = 2x$ (2) $y = ...

角度直線三角関数tan加法定理
2025/6/16

図の三角形を用いて、$0 < x < 1$ のとき、次の等式を証明せよ。 $\sin^{-1}x = \cos^{-1}\sqrt{1-x^2}$

三角関数逆三角関数ピタゴラスの定理証明
2025/6/16

$\triangle OAB$ において、辺 $OA$ を $1:2$ に内分する点を $M$ とし、辺 $OB$ を $3:2$ に内分する点を $N$ とする。線分 $AN$ と線分 $BM$ の...

ベクトル内分点交点一次独立平面ベクトル
2025/6/16

$\triangle ABC$ において、辺 $BC$ を $2:1$ に内分する点を $P$ とする。線分 $AP$ を $(1-t):t$ ($0<t<1$) に内分する点を $Q$ とする。等式...

ベクトル内分点空間ベクトル
2025/6/16

与えられた3点を頂点とする三角形の面積を求める問題です。 (1) は原点O(0, 0)と点A(4, 3), B(1, -3)を頂点とする三角形の面積を求めます。 (2) は点A(0, -1), B(2...

三角形面積座標
2025/6/16