複素数 $z$ についての方程式 $z^2 = 1 + \sqrt{3}i$ を解く問題です。代数学複素数複素数平面極形式方程式2025/6/171. 問題の内容複素数 zzz についての方程式 z2=1+3iz^2 = 1 + \sqrt{3}iz2=1+3i を解く問題です。2. 解き方の手順まず、1+3i1 + \sqrt{3}i1+3i を極形式で表します。r=12+(3)2=1+3=4=2r = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1+3} = \sqrt{4} = 2r=12+(3)2=1+3=4=2θ\thetaθ を偏角とすると、cosθ=12,sinθ=32\cos\theta = \frac{1}{2}, \sin\theta = \frac{\sqrt{3}}{2}cosθ=21,sinθ=23 より、θ=π3\theta = \frac{\pi}{3}θ=3πしたがって、1+3i=2(cosπ3+isinπ3)1 + \sqrt{3}i = 2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})1+3i=2(cos3π+isin3π) となります。z=x+yiz = x + yiz=x+yi とおくと、z2=(x+yi)2=x2−y2+2xyiz^2 = (x+yi)^2 = x^2 - y^2 + 2xyiz2=(x+yi)2=x2−y2+2xyiz2=1+3iz^2 = 1 + \sqrt{3}iz2=1+3i より、x2−y2=1x^2 - y^2 = 1x2−y2=12xy=32xy = \sqrt{3}2xy=3z2=2(cosπ3+isinπ3)z^2 = 2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})z2=2(cos3π+isin3π) なので、z=r(cosθ+isinθ)z = r(\cos\theta + i\sin\theta)z=r(cosθ+isinθ) とすると、z2=r2(cos2θ+isin2θ)z^2 = r^2(\cos2\theta + i\sin2\theta)z2=r2(cos2θ+isin2θ)r2=2r^2 = 2r2=2 より r=2r = \sqrt{2}r=22θ=π3+2nπ2\theta = \frac{\pi}{3} + 2n\pi2θ=3π+2nπ, nnn は整数θ=π6+nπ\theta = \frac{\pi}{6} + n\piθ=6π+nπn=0n = 0n=0 のとき、θ=π6\theta = \frac{\pi}{6}θ=6πn=1n = 1n=1 のとき、θ=π6+π=7π6\theta = \frac{\pi}{6} + \pi = \frac{7\pi}{6}θ=6π+π=67πz=2(cosπ6+isinπ6)=2(32+12i)=62+22iz = \sqrt{2}(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}) = \sqrt{2}(\frac{\sqrt{3}}{2} + \frac{1}{2}i) = \frac{\sqrt{6}}{2} + \frac{\sqrt{2}}{2}iz=2(cos6π+isin6π)=2(23+21i)=26+22iz=2(cos7π6+isin7π6)=2(−32−12i)=−62−22iz = \sqrt{2}(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}) = \sqrt{2}(-\frac{\sqrt{3}}{2} - \frac{1}{2}i) = -\frac{\sqrt{6}}{2} - \frac{\sqrt{2}}{2}iz=2(cos67π+isin67π)=2(−23−21i)=−26−22i別の解法として、x2−y2=1x^2 - y^2 = 1x2−y2=1 と 2xy=32xy = \sqrt{3}2xy=3 から解く。y=32xy = \frac{\sqrt{3}}{2x}y=2x3 を x2−y2=1x^2 - y^2 = 1x2−y2=1 に代入する。x2−(32x)2=1x^2 - (\frac{\sqrt{3}}{2x})^2 = 1x2−(2x3)2=1x2−34x2=1x^2 - \frac{3}{4x^2} = 1x2−4x23=14x4−3=4x24x^4 - 3 = 4x^24x4−3=4x24x4−4x2−3=04x^4 - 4x^2 - 3 = 04x4−4x2−3=0(2x2−3)(2x2+1)=0(2x^2 - 3)(2x^2 + 1) = 0(2x2−3)(2x2+1)=0x2=32,−12x^2 = \frac{3}{2}, -\frac{1}{2}x2=23,−21x2=32x^2 = \frac{3}{2}x2=23 より x=±32=±62x = \pm\sqrt{\frac{3}{2}} = \pm\frac{\sqrt{6}}{2}x=±23=±26x=62x = \frac{\sqrt{6}}{2}x=26 のとき y=3262=36=12=22y = \frac{\sqrt{3}}{2\frac{\sqrt{6}}{2}} = \frac{\sqrt{3}}{\sqrt{6}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}y=2263=63=21=22x=−62x = -\frac{\sqrt{6}}{2}x=−26 のとき y=32(−62)=−36=−12=−22y = \frac{\sqrt{3}}{2(-\frac{\sqrt{6}}{2})} = -\frac{\sqrt{3}}{\sqrt{6}} = -\frac{1}{\sqrt{2}} = -\frac{\sqrt{2}}{2}y=2(−26)3=−63=−21=−22よって、z=62+22i,−62−22iz = \frac{\sqrt{6}}{2} + \frac{\sqrt{2}}{2}i, -\frac{\sqrt{6}}{2} - \frac{\sqrt{2}}{2}iz=26+22i,−26−22i3. 最終的な答えz=62+22i,z=−62−22iz = \frac{\sqrt{6}}{2} + \frac{\sqrt{2}}{2}i, z = -\frac{\sqrt{6}}{2} - \frac{\sqrt{2}}{2}iz=26+22i,z=−26−22i