与えられた等式 $7x + y = 4$ を、$y$ について解き、次に $x$ について解く問題です。代数学一次方程式式の変形移項文字式の計算2025/6/171. 問題の内容与えられた等式 7x+y=47x + y = 47x+y=4 を、yyy について解き、次に xxx について解く問題です。2. 解き方の手順(1) yyy について解く場合:等式 7x+y=47x + y = 47x+y=4 から、yyy を求めるには、7x7x7x を右辺に移項します。y=4−7xy = 4 - 7xy=4−7x(2) xxx について解く場合:等式 7x+y=47x + y = 47x+y=4 から、xxx を求めるには、yyy を右辺に移項します。7x=4−y7x = 4 - y7x=4−y次に、両辺を 777 で割ります。x=4−y7x = \frac{4 - y}{7}x=74−y3. 最終的な答えyyy について解いた答え:y=4−7xy = 4 - 7xy=4−7xxxx について解いた答え:x=4−y7x = \frac{4 - y}{7}x=74−y