関数 $f(x) = x^3$ について、$x=4$ における微分係数を求めよ。

解析学微分微分係数関数の微分
2025/6/17

1. 問題の内容

関数 f(x)=x3f(x) = x^3 について、x=4x=4 における微分係数を求めよ。

2. 解き方の手順

まず、f(x)=x3f(x) = x^3 を微分して、f(x)f'(x) を求めます。
f(x)=3x2f'(x) = 3x^2
次に、x=4x=4f(x)f'(x) に代入して、微分係数を求めます。
f(4)=3×42=3×16=48f'(4) = 3 \times 4^2 = 3 \times 16 = 48

3. 最終的な答え

48

「解析学」の関連問題

関数 $y = x|x^2 - 3|$ のグラフを描く問題です。

関数のグラフ絶対値微分極値グラフの概形
2025/6/20

以下の不定積分を計算します。 (1) $\int (3x+1)^5 dx$ (2) $\int \frac{4}{(6x-1)^2} dx$ (3) $\int \sqrt[3]{5-2x} dx$ ...

積分不定積分置換積分
2025/6/20

$y = \sin \theta - \sqrt{3} \cos \theta$ の最大値、最小値と、それらを与える $\theta$ の値を $0 \le \theta \le \pi$ の範囲で求...

三角関数最大値最小値三角関数の合成
2025/6/20

与えられた4つの微分方程式の一般解を求めます。 (1) $x \tan y + (1+x^2) \frac{dy}{dx} = 0$ (2) $\frac{dy}{dx} = (x+y+1)^2$ (...

微分方程式一般解分離形置換同次形1階線形
2025/6/20

問題は、関数 $y = 2\sin\theta\cos\theta - 2(\sin\theta + \cos\theta) + 3$ について、$\sin\theta + \cos\theta = ...

三角関数最大値最小値合成関数のグラフ
2025/6/19

関数 $y = \sqrt{2+x}$ のマクローリン展開の第 $n+1$ 項を求める問題です。与えられた式を埋める形で答えます。

マクローリン展開テイラー展開関数の展開微分
2025/6/19

与えられた3つの関数について、それぞれの極値を求めます。 (1) $f(x) = x^2 e^{-x} + 4$ (2) $f(x) = x \log x$ (3) $f(x) = \frac{x+2...

極値導関数増減表対数関数指数関数
2025/6/19

$y = \sin(3x)$ のマクローリン展開における第 $n+1$ 項を求める問題です。

マクローリン展開三角関数級数
2025/6/19

次の関数の極値を求めよ。 (1) $f(x) = |x|(x+1)$ (2) $f(x) = |x|\sqrt{x+2}$

極値導関数絶対値関数平方根関数
2025/6/19

$y = \sin \theta$ と $y = \tan \theta$ のグラフが与えられており、図中の目盛り A から J の値を求める問題です。

三角関数グラフsintan周期最大値最小値
2025/6/19