与えられた式を簡略化します。式は $3\left\{\frac{2(2^n - 1)}{2-1}\right\} - (3n-2)(2^{n+1}+1)$ です。代数学式の簡略化指数代数計算2025/6/171. 問題の内容与えられた式を簡略化します。式は 3{2(2n−1)2−1}−(3n−2)(2n+1+1)3\left\{\frac{2(2^n - 1)}{2-1}\right\} - (3n-2)(2^{n+1}+1)3{2−12(2n−1)}−(3n−2)(2n+1+1) です。2. 解き方の手順まず、括弧内の分数を簡略化します。2−1=12-1=12−1=1なので、2(2n−1)2−1=2(2n−1)1=2(2n−1)=2n+1−2\frac{2(2^n - 1)}{2-1} = \frac{2(2^n - 1)}{1} = 2(2^n - 1) = 2^{n+1} - 22−12(2n−1)=12(2n−1)=2(2n−1)=2n+1−2.次に、元の式に代入して簡略化します。3{2n+1−2}−(3n−2)(2n+1+1)3\{2^{n+1} - 2\} - (3n-2)(2^{n+1}+1)3{2n+1−2}−(3n−2)(2n+1+1).括弧を展開します。3(2n+1)−6−(3n(2n+1)+3n−2(2n+1)−2)3(2^{n+1}) - 6 - (3n(2^{n+1}) + 3n - 2(2^{n+1}) - 2)3(2n+1)−6−(3n(2n+1)+3n−2(2n+1)−2)=3(2n+1)−6−3n(2n+1)−3n+2(2n+1)+2= 3(2^{n+1}) - 6 - 3n(2^{n+1}) - 3n + 2(2^{n+1}) + 2=3(2n+1)−6−3n(2n+1)−3n+2(2n+1)+2=5(2n+1)−3n(2n+1)−3n−4= 5(2^{n+1}) - 3n(2^{n+1}) - 3n - 4=5(2n+1)−3n(2n+1)−3n−4=(5−3n)2n+1−3n−4= (5-3n)2^{n+1} -3n - 4=(5−3n)2n+1−3n−4=(5−3n)2⋅2n−3n−4= (5-3n)2 \cdot 2^n - 3n - 4=(5−3n)2⋅2n−3n−4=(10−6n)2n−3n−4= (10-6n)2^n - 3n - 4=(10−6n)2n−3n−4.3. 最終的な答え(10−6n)2n−3n−4(10-6n)2^n - 3n - 4(10−6n)2n−3n−4