$x+y+z=0$, $xy+yz+zx=-5$, $xyz=2$ のとき、$x^2+y^2+z^2$ および $x^2y^2+y^2z^2+z^2x^2$ の値を求めよ。代数学対称式多項式連立方程式2025/6/171. 問題の内容x+y+z=0x+y+z=0x+y+z=0, xy+yz+zx=−5xy+yz+zx=-5xy+yz+zx=−5, xyz=2xyz=2xyz=2 のとき、x2+y2+z2x^2+y^2+z^2x2+y2+z2 および x2y2+y2z2+z2x2x^2y^2+y^2z^2+z^2x^2x2y2+y2z2+z2x2 の値を求めよ。2. 解き方の手順まず、x+y+z=0x+y+z=0x+y+z=0 の両辺を2乗すると、(x+y+z)2=02(x+y+z)^2 = 0^2(x+y+z)2=02x2+y2+z2+2(xy+yz+zx)=0x^2+y^2+z^2+2(xy+yz+zx) = 0x2+y2+z2+2(xy+yz+zx)=0x2+y2+z2+2(−5)=0x^2+y^2+z^2+2(-5) = 0x2+y2+z2+2(−5)=0x2+y2+z2=10x^2+y^2+z^2 = 10x2+y2+z2=10次に、x2y2+y2z2+z2x2x^2y^2+y^2z^2+z^2x^2x2y2+y2z2+z2x2 を求める。(xy+yz+zx)2=x2y2+y2z2+z2x2+2(xy2z+xyz2+x2yz)(xy+yz+zx)^2 = x^2y^2+y^2z^2+z^2x^2+2(xy^2z+xyz^2+x^2yz)(xy+yz+zx)2=x2y2+y2z2+z2x2+2(xy2z+xyz2+x2yz)(xy+yz+zx)2=x2y2+y2z2+z2x2+2xyz(x+y+z)(xy+yz+zx)^2 = x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)(xy+yz+zx)2=x2y2+y2z2+z2x2+2xyz(x+y+z)(−5)2=x2y2+y2z2+z2x2+2(2)(0)(-5)^2 = x^2y^2+y^2z^2+z^2x^2+2(2)(0)(−5)2=x2y2+y2z2+z2x2+2(2)(0)25=x2y2+y2z2+z2x225 = x^2y^2+y^2z^2+z^2x^225=x2y2+y2z2+z2x2x2y2+y2z2+z2x2=25x^2y^2+y^2z^2+z^2x^2 = 25x2y2+y2z2+z2x2=253. 最終的な答えx2+y2+z2=10x^2+y^2+z^2 = 10x2+y2+z2=10x2y2+y2z2+z2x2=25x^2y^2+y^2z^2+z^2x^2 = 25x2y2+y2z2+z2x2=25